熱帯海上における降水特性による 降水・循環の将来変化パターンの マルチモデル間の違い 廣田渚郎、高薮縁 (東大AORI) 2011/6/9.

Slides:



Advertisements
Similar presentations
ヤマセ海域の SST 分布の将来予測 ー CMIP3 と CMIP5 の比較ー 児玉安正 協力者 Ibnu Fathrio, 佐々木実紀 (弘前大学大学院・理工学研究 科)
Advertisements

CMIP5 気候モデルにおける三 陸沿岸の SST の再現と将来予測 児玉安正・ Ibnu Fathrio ・佐々木実紀 (弘前大学大学院・理工学研究科)
気候 - 海・陸炭素循環結合モデルを用い た 地球温暖化実験の結果 吉川 知里. 気候 - 海・陸炭素循環 結合モデル.
CMIP5 気候モデルにおける ヤマセの将来変化: 海面水温変化パターンとの関係 気象研究所 気候研究部 遠藤洋和 第 11 回ヤマセ研究会 1.
降水セルから見た 甑島ラインの形成過 程. 諫早ライン 1997/07/11/16:00JST 2001/06/19/11:30JST 五島ライン 五島列島 甑島列島 長崎半島 甑島ライン 2002/07/01/12:20JST 長さ:約 80km 長さ : 約 70km 長さ : 約 150km.
温暖化に対する 寒冷圏の応答 予想以上に氷流出進行? 2月 17 日朝日新聞 3月 25 日朝日新聞 阿部彩子 地球 Frontier 研究センター 東大気候システム研究センター 国立環境研究所.
中解像度大気海洋結合モデル開発 阿部、瀬川、小倉、 羽角、西村 発表 : 大垣内 もくじ 現状、スペック 標準実験 温暖化実験 まとめ おまけ.
JRA-55再解析データの 領域ダウンスケーリングの取り組み
数値気象モデルCReSSの計算結果と 観測結果の比較および検討
アンサンブルハインドキャスト実験結果を用いたイネ葉いもち病の発生確率予報の精度検証
GCM 検討会, Jun 25, 2010 MIROC5現状 渡部雅浩
こんにちは.
気候-陸域炭素循環結合モデルの開発 加藤 知道 地球環境フロンティア研究センター 22nd Sep 2005.
力学的ダウンスケールによる2003年東北冷夏の アンサンブル予報実験
海洋生態系‐同位体分子種モデルを用いた 西部北太平洋におけるN2O生成プロセスの解明 吉川知里(BGC/JAMSTEC)
北海道大学大学院理学研究科地球惑星科学専攻 地球流体力学研究室 M1 山田 由貴子
惑星大気大循環モデル DCPAM を用いた 地球大気に関する数値実験
大気再解析データで表現されるヤマセ -モデルによるSSTの違いと解析された気温への影響-
*大気の鉛直構造 *太陽放射の季節・緯度変化 *放射エネルギー収支・輸送 *地球の平均的大気循環
いまさら何ができるのか?何をやらねばならないのか?
卜部 佑介* 前田 修平 気象庁 地球環境・海洋部 気候情報課
CMIP5マルチ気候モデルにおける ヤマセに関連する大規模大気循環の 再現性と将来変化
CMIP5マルチ気候モデルにおける ヤマセに関連する大規模大気循環の 再現性と将来変化(その2)
1km格子で再現された2003年・2004年7月の気温場 気温場 降水分布の比較 沢田雅洋 岩崎俊樹 (東北大学) Miyagi Pref.
海氷の再現性の高いモデルを用いた 北半球の将来 地球環境気候学研究室 平野穂波 指導教員 立花義裕教授
2013年7月のヤマセについて 仙台管区気象台 須田卓夫 昨年のまとめ(赤字は研究会後の調査)
バングラデシュにおける対流活動と局地風に関する研究
Improvements of the Eastward Propagation of the MJO in MIROC6
海洋炭素循環モデルの進捗状況 吉川知里 共生2連絡会議   C. Yoshikawa.
全球の海霧の将来変化 気象研究所気候研究部 川合秀明、 神代剛、 遠藤洋和、 荒川理 第12回ヤマセ研究会 2016年3月10日
アンサンブル気候予測データベース(d4PDF)における東アジア気候の再現性と将来変化
海氷が南極周辺の大気循環に与える影響 地球環境気候学研究室  緒方 香都 指導教員:立花 義裕教授.
ヤマセによる冷夏をターゲットにした アンサンブルダウンスケール予報実験
GCM, 衛星データにおける雲・放射場 ーGCMにおけるパラメタリゼーションの問題点のより明確な把握へー
2.温暖化・大気組成変化相互作用モデル開発 温暖化 - 雲・エアロゾル・放射フィードバック精密評価
冬季北大西洋振動が 翌冬の日本の気候に与える影響
河宮未知生 吉川知里 加藤知道 (FRCGC/JAMSTEC)
南北両半球間を横断する 水蒸気輸送と降水量との関連性
共生第二課題における 陸域生態系炭素循環モデルの研究計画 名古屋大学大学院 環境学研究科地球環境科学専攻 市井 和仁
海上下層雲のパラメタリゼーション及び、海上下層雲と高気圧の関係
気候シナリオモデルを用いた将来のヤマセ発生可能性について
いろいろな人工衛星による積雲対流活動の観測例 全球降水観測計画(GPM)主衛星打ち上げ成功!
気候モデルのダウンスケーリングデータにおける ヤマセの再現性と将来変化
気候-陸域炭素循環結合モデル 2005年度まで ・モデル結合を完成 ・20世紀の炭素循環を再現 2006年度 ・21世紀の炭素循環の推定
菅野洋光 (農研機構東北農業研究センター) 渡部雅浩 (東京大学大気海洋研究所)
Johnson et al., 1999 (Journal of Climate)
CMIP3/CMIP5気候モデルにおける ヤマセに関連する大規模大気循環の再現性 ~モデル解像度による違い~
冬季、東シナ海・日本南方海域における 温帯低気圧の発生に関する気候学的研究
MIROC4.1 PDF予報 (渡部・江守) 雲氷予報 (小倉・江守) 新境界層 (千喜良・望月) full SPRINTARS
CMIP5気候モデルにおける ヤマセの将来変化
気候モデルのダウンスケーリングデータにおけるヤマセの再現性と将来変化2
CMIP3 マルチモデルにおける熱帯海洋上の非断熱加熱の鉛直構造 廣田渚郎1、高薮縁12 (1東大気候システム、2RIGC/JAMSTEC)
学部生対象 地球水循環研究センター(一部)説明会 趣旨説明
夏の中高緯度海上には、なぜ下層雲が多いのか?
竜巻状渦を伴う準定常的なスーパーセルの再現に成功
MIROC5による将来のヤマセの再現性について(2)
地球環境気候学研究室 513M230 松本直也 指導教員 立花義裕
北極振動の増幅と転調は 何故20世紀末に生じたか? Why was Arctic Oscillation amplified and Modulated at the end of the 20th century? 地球環境気候学研究室 鈴木 はるか 513M228 立花 義裕, 山崎 孝治,
地球温暖化実験におけるヤマセ海域のSST変化- CMIP3データの解析(序報)
全球モデルにおける中緯度下層雲の鉛直構造の解析
東北地域のヤマセと冬季モンスーンの 先進的ダウンスケール研究 1.気候研究 地球温暖化時代の東北の気候
アンサンブルハインドキャスト実験結果を 用いた葉いもち発生確率予報の精度検証
海洋研究開発機構 地球環境フロンティア研究センター 河宮未知生 吉川知里 加藤知道
将来気候における季節進行の変化予測 (偏西風の変化の観点から)
全球気候モデルMIROC5によるヤマセ型気圧配置の再現性 (3:風の再現性について)
1km格子で再現された2003年7月の気温の誤差評価
K2地球システム統合モデル 成層圏拡張の進捗について
CMIP3マルチ気候モデルにおける 夏季東アジアのトレンド
従来研究 本研究 結果 南極大型大気レーダーPANSYで観測された大気重力波の数値モデル再現実験による力学特性の解明
共生2-3相関チャート ※共生2のグループ分け 炭素循環 陸域(炭素循環、 植生動態) 海洋 大気組成 大気化学 エアロゾル 寒冷圏モデル
Presentation transcript:

熱帯海上における降水特性による 降水・循環の将来変化パターンの マルチモデル間の違い 廣田渚郎、高薮縁 (東大AORI) 2011/6/9

・SSTが高くても、大気中下層(~600hPa)が乾燥していると 深い対流が抑制される。 ↑ CMIP3モデル、 -熱帯降水分布再現性 はじめに1: ・SSTが高くても、大気中下層(~600hPa)が乾燥していると  深い対流が抑制される。  (Takayabu et al., 2010, JC) ↑ CMIP3モデル、 -熱帯降水分布再現性 -ダブルITCZ  に重要。  (Hirota et al., in press, JC) ・エントレインメント表現を  改良したMIROC5では、  ダブルITCZが改善された。 (Chikira, 2010) 降水量 (色), SST (線) [SON] TRMM 再現性高 再現性低 (Hirota, et al. in press)

大気加熱 vs RH600 降水分布の 再現性高も低も、 RH600 > 50 % 深い RH600< 50% 浅い 深い対流の Q1-QR(色)、PDF(白線)、降水強度(青線) 大気加熱 vs RH600 (Q1-QR; 色) (横軸) 降水分布の 再現性高も低も、  RH600 > 50 % 深い  RH600< 50% 浅い 再現性高 再現性低 深い対流の RH600依存性は、 再現性高で再現性低より大きい。 (Hirota et al. , in press, JC) 低-高 dry←RH600[%]→humid

・CMIP3モデルによる将来気候実験では、 -赤道付近中央~東太平洋で降水量増加 -Walker循環の弱化 -Hadley循環の弱化 はじめに2: ・CMIP3モデルによる将来気候実験では、   -赤道付近中央~東太平洋で降水量増加   -Walker循環の弱化   -Hadley循環の弱化  が多くのモデルに共通して予測されている。   (IPCC, 2007) ・変化の大きさなどに、  モデル間の大きなばらつき。  どのモデルの予測の  信頼性が高いか? (Knutti, 2010) 降水量変化 (IPCC, 2007)

目的: ・熱帯海上降水分布・循環場の将来変化の  マルチモデル間の違いを調べる。     ↑ モデル間の対流特性の違いから理解できるか?

データ: CMIP3 MIROC5(AORI/NIES/RIGC) TRMM (98-07) prcp., Q1, QR  Hadley Centre SST(HadISST)  JRA25, ERA40 reanalyses 現在気候: 1981-2000平均 将来変化: [2081~2100]-[1981~2000] 熱帯海上で、  年平均値を解析する。 CMIP5で使う新Version エントレインメント率が 環境場の状態に依存する。 (Chikira and Sugiyama, 2010) Model Convective scheme JRA Pan and Randall (1998) ERA Tiedke (1989), Gregory (2000) BCCR Bougeault (1985) CCCMA* Zhang and McFarlane (1995) CCCMA_t63* CNRM CSIRO_0 Gregory and Rowntree (1990) CSIRO_5 GFDL_0 Moorthi and Suarez (1992), Tokioka (1988) GFDL_1 GISS_AOM Russell et al. (1995) GISS_E_H Del Genio and Yao (1993) GISS_E_R IAP INGV_ECHAM4 Tiedke (1989), Nordeng (1994) INMCM3* Betts (1986) MIROC_H Pan and Randall (1998), Emori (2001) MIROC_M MIUB* MPI_ECHAM5 MRI* Pan and Randall (1998), Tokioka (1988) MIROC5 Chikira and Sugiyama (2010) CMIP3 BCCR IAP CCCMA* IPSL CCCMA_t63* INGV_ECHAM4 CNRM INMCM3* CSIRO_0 MIROC_H CSIRO_5 MIROC_M GFDL_0 MIUB* GFDL_1 MPI_ECHAM5 GISS_AOM MRI* GISS_E_R (*flux adjustment)

[現在気候] 熱帯海上(30S-30N)降水分布再現性 (Taylor, 2001) Ref: TRMM Reanalyses MIROC5 Flux Adjustment CMIP3 HighScoreModels LowScoreModels

現在気候 vs 将来変化: 熱帯海上(30S-30N)の降水分布 パーフェクトモデルテスト 分布の類似性はTaylorスキルスコアで評価 相関 有意 将来変化の類似性 ▲: LSMとLSM ●: HSMとHSM ○:MIROC5と他モデル ・ : その他 Abe et al. (2009) と整合的 現在気候の類似性

HSM vs LSM: Δ降水量(color) とΔω500(contour)

HSM vs LSM: 5S-5Nの東西鉛直循環の変化(色はω500)

HSM vs LSM: Δ降水量(color) とΔω500(contour) LSM-HSM(ハッチは有意性)

赤道付近中央~東太平洋で、 [HSM] 1.05 = 0.94 + 0.11 + 0.00 [LSM] Q1-QR(色)、PDF(白線)、降水強度(青線) HSM LSM 20世紀    21世紀 RH600のPDF dry←RH600[%]→humid [HSM] [LSM] 1.05 = 0.94 + 0.11 + 0.00 0.67 = 0.54 + 0.12 + 0.00 降水強度のRH依存性が大きい フィードバックが強い

MIROC5: HSMと同様に ・Walker循環弱化 ・赤道付近 中央~東太平洋 で降水量増加 特徴的なのは、 赤道付近中央太平洋の Δ降水量(色)とΔω500(線) MIROC5: HSMと同様に ・Walker循環弱化 ・赤道付近  中央~東太平洋  で降水量増加 特徴的なのは、 赤道付近中央太平洋の 降水量増加は 500hPa程度の深さの 対流による。 東西鉛直循環の変化(色はΔω)

まとめ:  ・熱帯海上降水分布について、   現在気候が類似なモデルは、将来変化も類似している。  ・現在気候再現性の高いHSMと低いLSMは、   Walker循環が弱化し、赤道付近太平洋の降水量増加。  ・ただし、変化の大きさがHSMの方が大きい。 HSMの方が降水強度のRH依存性が強いので、 フィードバックが強い。 MIROC5:  HSMとLSMと類似な将来変化。  ただし、赤道付近中央太平洋の降水量増加は、  500hPa程度の深さの対流による。