リサイクル工学特論 ~imai/recycle/recycle.html

Slides:



Advertisements
Similar presentations
内燃機関と外燃機関.
Advertisements

冷媒回路のしくみ<ヒートポンプを分解すると>
冷媒回路のしくみ<ヒートポンプを分解すると>
液体チッソ パートⅡ ‘07/01/31 kana.
1.ボイルの法則・シャルルの法則 2.ボイル・シャルルの法則 3.気体の状態方程式・実在気体
リサイクル工学特論 ~imai/recycle/recycle.html
~imai/haikibutsu/haikibutsu.html 廃棄物処理工学 ~imai/haikibutsu/haikibutsu.html 第??回:H??年??月??日.
物質量 原子量・分子量・式量.
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
5.4 収集・運搬 収集・運搬機材の特性 1)バキュームカー
熱力学Ⅰ 第1回「熱力学とは」 機械工学科 佐藤智明.
化学的侵食 コンクリート工学研究室 岩城 一郎.
エネルギー基本計画 1 エネルギーの安定供給の確保を図るための基本方針 環境への適合を図るための基本方針
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
本時の目標 エネルギーを有効に活用するにはエネルギー変換効率を髙める必要があることを知る。
リサイクル工学特論 ~imai/recycle/recycle.html
~imai/haikibutsu/haikibutsu.html 廃棄物処理工学 ~imai/haikibutsu/haikibutsu.html 第8回:H27年11月30日.
建設と環境 建築 ビル・住宅 建設 ハードな分野 土木 道路・橋梁・ダム トンネル・堤防 ソフトな分野 交通計画・都市計画
10 水環境(5)富栄養化 水の華(Water bloom) 赤潮 アメリカ カリフォルニア州 アオコ 神奈川 津久井湖.
好気呼吸 解糖系 クエン酸回路 水素伝達系.
福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
反応性流体力学特論  -燃焼流れの力学- 燃焼の流体力学 4/22,13 燃焼の熱力学 5/13.
有害廃棄物管理棟(旧廃棄物管理施設) 指導教官: 町田 基(教授),天野 佳正(助教),鮫島 隆行(技官) 研究分野:
化学的侵食 コンクリート工学研究室 岩城 一郎.
4.イオン結合と共有結合 セラミックスの結合様式 [定義] (1)イオン結合・・・
建築環境工学・建築設備工学入門 <空気調和設備編> <空気調和設備> 加 湿 [Last Update 2015/04/30]
リサイクル工学特論 ~imai/recycle/recycle.html
鉄筋コンクリート構造の材料(1) ・図解「建築の構造と構法」     91~93ページ ・必携「建築資料」   材料:78~79ページ.
酸化と還元.
2007年7月 株式会社 ケー・イー・エム.
株式会社 ケー・イー・エム.
高剪断力による含有水分の脱水技術と 予熱噴霧技術の組合せによる 褐炭の高効率利用
製剤技術Q&Aプレゼンテーション システムのご紹介 のご紹介 株式会社パウレック 営業本部  高野 優介.
反応性流体力学特論2009 第1講 (4/15) -燃焼工学入門-
環境触媒:最近の開発動向とリサイクル技術
バイオガスプラント 新時代を切り開く・・・.
実務フォロー研修 クリーンセンター多摩川の現状と課題 平成11年3月2日 東京都清掃研究所.
エレクトリオンのご紹介  Ver /3/26.
燃焼の流体力学 4/22 燃焼の熱力学 5/13 燃焼流れの数値解析 5/22
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
化学的侵食 コンクリート工学研究室 岩城一郎.
Taniguchi Lab. meeting 2004/10/15 Shigefumi TOKUDA
This issue sponsored by Messages for Manufacturing Personnel
現在の環境問題の特色 ● 環境問題の第一の波: 1960年代の公害 (水俣病、イタイイタイ病、四日市・川崎喘息など)
環境負荷低減・資源高効率利用技術の開発プロジェクト
5.4 収集・運搬 収集・運搬機材の特性 1)バキュームカー
室蘭製油所 水素化分解装置(HDC) 火災調査概要
10.建築材料の燃焼性 燃焼 強い発熱を伴う化学反応が高速で起きる現象 発光を伴うことが多い 発熱作用による高温⇔大きな反応速度
2009年7月2日 熱流体力学 第12回 担当教員: 北川輝彦.
建築環境工学・建築設備工学入門 <空気調和設備編> <換気設備> 自然換気の仕組みと基礎
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
モル(mol)は、原子・分子の世界と 日常世界(daily life)をむすぶ秤(はかり)
福井工業大学 原 道寛 学籍番号____ 氏名________
4.燃焼と火炎性状(1).
環境触媒グループ ガソリン車と比べて ディーゼル車の利点 現在ディーゼル車の走行台数が増加している ディーゼル車排ガス中での汚染物質 危害
電子システム専攻2年 遠藤圭斗 指導教官 木下祥次 教授
過熱水蒸気技術について トクデン株式会社 東京営業所 浦井 弘充 第一高周波工業株式会社 機器事業部 機器開発部 吉村 拓郎 1.
鉄筋コンクリート構造の材料(1) ・図解「建築の構造と構法」     91~93ページ ・必携「建築資料」   材料:78~79ページ.
CPU冷却用素子の開発 理工学研究科環境制御工学専攻 長谷川 靖洋
サハリン開発と天然ガス 新聞発表 5月14日 上野 雅史 坂中 遼平 松崎 翔太朗 河原塚 裕美 .
テーマ 名古屋市の家庭から出るゴミの処理方法を考えよう
一般廃棄物の現状と問題点 班名 メンバー 9班棚橋AA C08042 伴野 祐大 C08044 藤原 成吾 C08045 松井 拓也.
リサイクル工学特論 ~imai/recycle/recycle.html
リサイクル工学特論 ~imai/recycle/recycle.html
§3.圧力を変えると.
リサイクル工学特論 ~imai/recycle/recycle.html
ディーゼルエンジンについて 尾崎文香 基礎セミナー発表.
外部条件に対する平衡の応答 ◎ 平衡 圧力、温度、反応物と生成物の濃度に応じて変化する
リサイクル工学特論 ~imai/recycle/recycle.html
新エネルギー ~住みよい日本へ~ E 山下 潤.
Presentation transcript:

リサイクル工学特論 http://ds.cc.yamaguchi-u.ac.jp/ ~imai/recycle/recycle.html 今井 剛(環境共生系専攻)

第6章 燃焼による資源化と処理

6.1燃焼工学の基礎 6.1.1燃焼の形態 ◇気体の燃焼 予混合燃焼方式・・・ 拡散燃焼方式 ・・・ 予め燃料と空気を均一に混合  拡散燃焼方式 ・・・ 予め燃料と空気を均一に混合 燃料と空気別々に供給 ◇液体燃料の燃焼 噴霧燃焼方式・・・燃料を霧状化 蒸発燃焼方式・・・蒸発を促進させて燃焼 ◇固体燃料の燃焼    火格子燃焼・・・格子の上に固体の固定層を作り燃焼    流動床燃焼・・・流動させた高温の砂に燃料を接触させ燃焼      微粉燃焼・・・燃料を微粉化   ガス化燃焼・・・燃料からの揮発分が酸素と混合して燃焼    表面燃焼・・・コークスや固定炭素が表面で酸素と反応(赤熱)

◇発熱量・・・1kgの燃料(個体,液体)、または1m3Nの燃料(気体)が 完全燃焼したときに発生する熱量 6.1.2 廃棄物燃料の特性 ◇発熱量・・・1kgの燃料(個体,液体)、または1m3Nの燃料(気体)が          完全燃焼したときに発生する熱量 ◇高位発熱量・・・燃焼ガス中の生成水蒸気が凝縮したときに  得られる凝縮潜熱を含めた発熱量       (1)日本の総合エネルギー統計 (2)日本の火力発電所の発電効率 (3)日本のCO2 排出量計算に使用される発熱量 (4)日本の都市ガスの取引基準 ◇低位発熱量・・・水蒸気のままで凝縮潜熱を含まない発熱量      低位発熱量 = 高位発熱量 - 水蒸気の潜熱×水蒸気量 (1)ボイラ設備の熱効率 (2)ディーゼルエンジン,ガスエンジン,ガスタービンなどの原動機の熱効率 (3)コージェネレーション設備の性能表示 燃料は化学的なエネルギーを内蔵→そのままでは利用することができない        燃料を燃焼 化学的エネルギー→熱エネルギー

◇都市ごみ可燃成分・・・炭水化物と石油系製品        元素組成・・・C:44.4% H:6.2% O:49.4% 発熱量 ・・・教科書 表6.1-1参照 含酸素化合物 含窒素化合物 発熱量  炭化水素化合物>         >含塩素化合物

ごみの元素組成分析・・・多くの手間や労力が必要 ごみは不均質なため ◇元素組成の推定      ごみの元素組成分析・・・多くの手間や労力が必要 ①基本的推算法・・・ ごみの物理組成の各成分を累積加算 ↓ 乾燥ごみ1kgに計算  水分を考慮 Pa:紙類 P:プラスチック類 Ga:厨芥類 Ce:繊維 Ba:木竹 Rr:その他  V:可燃分量 C=0.4210・Pa+0.7211・P+0.4512・Ga+0.5179・Ce+0.4911・Ba+0.4005・Rr H=0.0656・Pa+0.1110・P+0.0612・Ga+0.0660・Ce+0.0635・Ba+0.0511・Rr N=0.0035・Pa+0.0055・P+0.0315・Ga+0.0367・Ce+0.0078・Ba+0.0218・Rr S=0.0003・Pa+0.0004・P+0.0009・Ga+0.0022・Ce+0.0001・Ba+0.0007・Rr Cl=0.4038・Pa+0.0693・P+0.3251・Ga+0.3449・Ce+0.4162・Ba+0.2918・Rr V=0.8961・Pa+0.9410・P+0.8729・Ga+0.9726・Ce+0.9801・Ba+0.7686・Rr O = V - ( C + H + N + S + Cl )

・・・ごみの三成分(可燃分,水分,灰分)の 値から低位発熱量を求める HL=α・B - 25・W ◇発熱量の推定 ・・・ 燃焼性の良否の判断 処理設備の設計及び性能判断 ①三成分値による推定 ・・・ごみの三成分(可燃分,水分,灰分)の 値から低位発熱量を求める HL=α・B - 25・W α:可燃分の低位発熱量[kj/kg]を100で除した値 B:ごみ中の可燃分[%] W:ごみ中の水分[%] ②物理組成による推定 ・・・プラスチック類とその他の可燃物に分けて   低位発熱量を求める HL=β( B´- P ) + γ・P - 25・W β:180~190   γ:310~340 B´:ごみ中の可燃物割合[%] P:ごみ中のプラスチックの割合[%]

③元素組成による推定 ④炉熱精算による推定 ・・・ごみの元素組成(炭素C,水素H,硫黄S, 酸素O [%])から高位発熱量を求める Dulongの式:可燃分中の酸素はすべてH2Oの形で存在していると仮定 Hh = 339.4・C + 1435.1( h - O/8 ) + 94.3・S Steuer-Kestnerの式:可燃分中の酸素は炭素とCOして               他の1/2はH2Oの形で結合していると仮定 Hh = 339.4( C - ( 3/8 )O ) + 238.8・( 3/8 )O + 1435.1( h – O/16 ) + 94.3・S Steuer-Kestnerの式:可燃分中の酸素は炭素とCOの形で結合していると仮定 Hh = 339.4( C - ( 3/4 )O ) + 1435.1H + 238.8・( 3/4 )O + 94.3・S ④炉熱精算による推定 ・・・ごみ焼却量,蒸気発生量,排ガス量などの   運転データを用いて熱収支からごみの低位   発熱量を求める よく用いられている 比較的正確

= ( C/12 ) + ( H/4 ) + ( S/32 ) - ( O/32 ) 6.1.3 燃焼計算 1)理論量の定義 理論酸素量 ・・・燃料を完全燃焼させるのに必要な空気量 理論空気量 ・・・燃料を完全燃焼させるのに必要な酸素量 理論燃焼ガス量 ・・・理論空気量によって完全燃焼させた時に生成する    燃焼ガスの量 元素 原子量 完全燃焼反応式 C H S O 12 1 32 16 C + O2 → CO2 H2 + 1/2O2 → H2O S + O → SO2 O2 - 1/2O2 → 0 理論酸素量 O0 [kmol/kg-燃料] = ( C/12 ) + ( H/4 ) + ( S/32 ) - ( O/32 ) 廃棄物1kg中 C:炭素[kg] H:水素 S:硫黄[kg] O:酸素[kg] N:窒素[kg] W:水分[kg] 理論空気量 L0 [kmol/kg-燃料] = O0・( 22.4/0.21 )

大 :λ 2)燃焼空気量 ・・・実際には理論空気量よりも 多く空気を供給する ↓ 空気比(air ratio)    多く空気を供給する ↓ 空気比(air ratio) 空気過剰率(excess air factor) :λ L(燃焼空気量) = λ・L0 [m3N/kg-燃料] 気体燃料(都市ガスなど):λ=1.1~1.3 液体燃料(重油など)  :λ=1.2~1.4 固体燃料(石炭)   :λ=1.4~2.0 λ: ごみ質が低い(低位発熱量が低い) 燃料と空気が混ざりにくい 大 λ = 21/( 21 - O2 [%]) 排ガス中の 酸素濃度を測定 [O2]:乾き燃焼ガス中の酸素濃度[%]

VD(乾きガス量)= 1.867C + 0.7S + 0.8N + (λ- 0.21) L0 ・・・CO2の生成 ・・・H2Oの生成 3-1)燃焼ガス量 VW(湿り燃焼ガス量) [m3N/kg] = 22.4×( C/12 )      + 22.4×{( H/2 ) + ( W/18 )}      + 22.4×( S/32 )      + 0.21(λ-1 )・L0      + 0.79・λ・ L0 + 22.4×( N/28 ) = 1.867C + 11.2H + 1.244W + 0.7S + 0.8N + (λ- 0.21) L0 VD(乾きガス量)= 1.867C + 0.7S + 0.8N + (λ- 0.21) L0 ・・・CO2の生成 ・・・H2Oの生成 ・・・SO2 ・・・余剰のO2 ・・・空気のN2+生成N2 廃棄物1kg中 C:炭素[kg] H:水素 S:硫黄[kg] O:酸素[kg] N:窒素[kg] W:水分[kg] 元素 原子量 完全燃焼反応式 C H S O 12 1 32 16 C + O2 → CO2 H2 + 1/2O2 → H2O S + O → SO2 O2 - 1/2O2 → 0 L0:理論空気量 λ:過剰空気率

3-2)燃焼ガス組成 CO2 = 1.867×(C/VD)×100 [%] O2 = 0.21×{( λ-1 )・ L0}/ VD×100 [%] N2={0.79λ・ L0 + 0.8N}/ VD×100 [%] 廃棄物1kg中 C:炭素[kg] N:窒素[kg] W:水分[kg] VD:乾きガス量   L0:理論空気量 SO2,HCl,NOx,CO,HCは微量のため無視する

HL + Cf・T0 + L・Cpa・Ta = VW・Cpg・Tg + α・HL Tg(燃焼ガス温度) 4)燃焼ガス温度 燃焼ガス VW [m3N/kg] 燃料 発熱量HL [kj/kg] 顕熱Cf×T0 [kj/kg] 放熱損失 α・HL [kj/kg] 燃料空気 L [m3N] 入熱 出熱 HL + Cf・T0 + L・Cpa・Ta = VW・Cpg・Tg + α・HL Tg(燃焼ガス温度)        = (HL + Cf・T0 + L・Cpa・Ta - α・HL )/(VW・Cpg) HL :ごみの低位発熱量[kj/kg]  Cf(1.256):ごみの比熱  T0 (20):供給時のごみの温度[℃]  L:燃焼空気量[m3N]  Cpa :燃焼空気の平均定圧比熱[kj/m3N・℃]  Ta:燃焼空気温度[℃]   α(0.03):諸熱損失の燃料入熱に対する割合  HL :低位発熱量[kj/kg]  TW:湿り燃焼ガス量[m3N/kg] Cpg:燃焼ガスの平均定圧比熱[kj/m3N・℃]  Tg:燃焼ガス温度[℃] 

6.2 燃焼形態と装置 マスバーン、ガス化溶融炉、ガス化改質に分類される(表6.2-1) ○ 燃焼方式 ・実績が多く、技術的確立度が高いことから運転管理が容易である ・必要に応じて灰溶融設備を別途設置しなければならない ・溶融設備が一体化され、自己熱溶融により外部エネルギーを必要としない ・開発の歴史が浅く運転管理面では未知数 ○ 燃焼方式 ○ 熱分解方式 システムの選択 ダイオキシン類などの排ガス処理性能に差はなく、建設コストもほぼ同等 システムの選択 ごみ量、ごみ質、残渣処理方法、施設規模、コスト、運転管理の容易性などから判断される

6.2.1 ストーカ式燃焼炉 ・1次燃焼空気により乾燥・ガス化燃焼(火災燃焼)・おき燃焼の工程を経て、灰として搬出 ・2次燃焼空気の挿入により燃焼室内でのガス混合が促進され、一酸化炭素やダイオキシンなどが完全燃焼される ごみ 乾燥 ガス化燃焼 火災燃焼 おき燃焼 灰 定量供給装置 乾燥ストーカ 燃焼ストーカ 灰搬出装置 後燃焼ストーカ 水蒸気 還元性ガス 輝炎 余剰酸素 ・幅広いごみ質(HL=3300~14600kJ/kg)の燃焼に対応可能 ・一般には紙類、段ボールくず、繊維類などの発熱量の比較的高い固形廃棄物の燃焼に適している ・幅広いごみ質(HL=3300~14600kJ/kg)の燃焼に対応可能

6.2.2 流動層式燃焼炉 ○ バブリング流動層(図6.2-2) ・炉床の上に砂などの流動媒体(粒径0.4~2mm程度のけい砂)が一定の高さまで充填される ・通気孔を有する散気管から流動化空気を供給すると、流動媒体が吹き上げられ懸濁、沸騰状態となり、流動層を形成する  流動層中に廃棄物が投入されると、それらは流動媒体と混合し、水分蒸発および可燃分の乾留ガス化が起こる (一部は流動層中で燃焼、他は流動層上部のフリーボードで2次燃焼) 安定した効率的な燃焼継続のため、固形物の前処理が必要 ・燃焼速度が速く、一酸化炭素などが発生しやすいので燃焼制御に工夫が必要 ・安定した効率的な燃焼継続のため、固形物の前処理が必要

火炉全体に広い反応領域、長い粒子滞留時間、高い熱伝達係数の確保 ○ 外部循環式流動層(図6.2-3)  ガスの流速が速く、粒子はガスと混合しながらガスに同伴され、飛び出した粒子は外部のサイクロンで捕集されふたたび火炉へ循環され、火炉全体にわたって流動層が形成される 火炉全体に広い反応領域、長い粒子滞留時間、高い熱伝達係数の確保 低空気比、低NOxによる高効率燃焼が可能 ごみ固形化燃料(RDF)燃焼による高効率発電に適用され始めている ・粒子により形成される流動層または移動層内に蒸気過熱器官を設置し、高温腐食を防止することで蒸気の高温高圧化が可能になる ・ごみ固形化燃料(RDF)燃焼による高効率発電に適用され始めている

・流動層部分を仕切壁で燃焼セルと収熱セルに分離し、燃焼セルにRDFなどの燃料を投入して燃焼させる ○ 内部循環式流動層(図6.2-4) ・流動層部分を仕切壁で燃焼セルと収熱セルに分離し、燃焼セルにRDFなどの燃料を投入して燃焼させる ・流動媒体は仕切壁を飛び越して収熱セルへ流入する ・流入した流動媒体は収熱セル内に設置された電熱管で熱回収された後、燃焼セルに循環される  収熱セルを燃焼排ガス中に含まれる塩化水素ガスなどの腐食性ガスの濃度が低い雰囲気としている  収熱セルには高温となった流動媒体が流入するので、収熱セルで燃焼は行われず供給される空気は2次空気として機能する 収熱セルには高温となった流動媒体が流入するので、収熱セルで燃焼は行われず供給される空気は2次空気として機能する

6.2.3 回転式燃焼炉(ロータリーキルン)図6.2-5 廃棄物をゆっくりとした回転により攪拌し、焼却する設備 ・炉容量が比較的大きく、広範囲の廃棄物を単独あるいは混合して処理することが可能 ≪特徴≫ ・発熱量の高い廃棄物の処理が可能  ストーカ炉のように耐熱性に限界のある金属製のストーカを使用しないので ・物理的性状の対応範囲が広い 脱水汚泥等の低発熱量廃棄物、廃プラスチック類、油泥等の粘性物や高発熱物 ≪廃棄物の種類≫ ・脱水汚泥等の低発熱量廃棄物 ・廃プラスチック類 ・油泥等の粘性物や高発熱物