理想線路 R = G = 0 と仮定すると、無損失(a = 0)かつ無歪となり、理想線路と呼ばれている また、 よって、 減衰極小条件

Slides:



Advertisements
Similar presentations
電気回路学 Electric Circuits 情報コース4セメ開講 円線図 山田 博仁.
Advertisements

円線図とは 回路の何らかの特性を複素平面上の円で表したもの 例えば、ZLの変化に応じてZinが変化する様子 Zin ZL
電磁気学Ⅱ Electromagnetics Ⅱ 6/5講義分 電磁波の反射と透過 山田 博仁.
放射線計測エレクトロニクスの信号処理の為の アナログ電子回路の基礎 第五回
電磁気学Ⅱ Electromagnetics Ⅱ 6/21講義分 共振器と導波路 山田 博仁.
5.アンテナの基礎 線状アンテナからの電波の放射 アンテナの諸定数
1.Atwoodの器械による重力加速度測定 2.速度の2乗に比例する抵抗がある場合の終端速度 3.減衰振動、強制振動の電気回路モデル
電磁気学C Electromagnetics C 7/13講義分 電磁波の電気双極子放射 山田 博仁.
電子回路Ⅰ 第2回(2008/10/6) 今日の内容 電気回路の復習 オームの法則 キルヒホッフの法則 テブナンの定理 線形素子と非線形素子
F行列 電気回路の縦続接続を扱うのに便利、電気回路以外でも広く利用されている A B C D V1 V2 I2 I1
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
2.伝送線路の基礎 2.1 分布定数線路 2.1.1 伝送線路と分布定数線路 集中定数回路:fが低い場合に適用
電磁気学Ⅱ Electromagnetics Ⅱ 5/15講義分 電磁場のエネルギー 山田 博仁.
5.3 接地アンテナ 素子の1つを接地して使用する線状アンテナ 5.3.1 映像アンテナと電流分布
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
4.給電線と整合回路 給電線:送信機とアンテナ,アンテナと受信機を結ぶ伝送線路 4.1 各種伝送線路
分布定数回路(伝送線路)とは 電圧(電界)、電流(磁界)は回路内の位置に依存 立体回路 TE, TM波
演習問題解答例 3. Fパラメータが既知の二端子対回路に電圧源 Eとインピーダンス ZGが接続された回路に対する等価電圧源を求めよ。 I1
電気回路学 Electric Circuits コンピュータサイエンスコース、ナノサイエンスコース4セメ開講 円線図 山田 博仁.
サンテクノ技術セミナー 高周波技術入門 講座テキスト その2 平成18年6月2日.
電磁気学Ⅱ Electromagnetics Ⅱ 5/19講義分 電磁場のエネルギー 山田 博仁.
電磁気学C Electromagnetics C 5/28講義分 電磁波の反射と透過 山田 博仁.
電磁気学C Electromagnetics C 6/8講義分 電磁波の反射と透過 山田 博仁.
今後の講義スケジュール 日程 内容 11/17 二端子対網、 Y行列、 Z行列 11/24 縦続行列 12/1 諸行列間の関係、 Y-D変換
電磁気学Ⅱ Electromagnetics Ⅱ 6/30講義分 電磁波の反射と透過 山田 博仁.
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
コンピュータサイエンスコース、ナノサイエンスコース4セメ開講
電気回路学 Electric Circuits 情報コース4セメ開講 供給電力最大の法則 山田 博仁.
電気回路学のまとめ 平成18年度後期開講分 講義資料のダウンロード
コンピュータサイエンスコース、ナノサイエンスコース4セメ開講
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
供給電力最大の法則 E Z0=R0+jX0 R jX Z=R+jX I (テブナンの定理) R で消費される電力 P は、 電源側 負荷側
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
電気回路の分類 一部修正しました 非線形回路 (重ね合わせの理が成り立たない) 線形回路 (重ね合わせの理が成り立つ)
電気回路学 Electric Circuits 情報コース4セメ開講 分布定数回路 山田 博仁.
電気回路学 Electric Circuits 情報コース4セメ開講 回路に関する諸定理 山田 博仁.
電気回路学のまとめ 平成19年度開講分 講義資料のダウンロード
電磁気学Ⅱ Electromagnetics Ⅱ 8/4講義分 電気双極子による電磁波の放射 山田 博仁.
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
電気回路学のまとめ 平成20年度開講分 講義資料のダウンロード
等価電源の定理とは 複数の電源を含む回路網のある一つの端子対からその回路を見た場合、その回路は、単一の電源(電圧源或いは電流源)と単一のインピーダンスまたはアドミタンスからなるシンプルな電源回路と等価と見なせる。 ただし、上記の定理が成り立つためには、回路網に含まれる全ての電源が同一周波数(位相は異なっていても良い)の電源であることと、回路が線形である(重ね合わせの理が成り立つ)ことが前提となる。
電磁気学Ⅱ Electromagnetics Ⅱ 6/9講義分 電磁場の波動方程式 山田 博仁.
電磁気学C Electromagnetics C 5/29講義分 電磁波の反射と透過 山田 博仁.
等価電源の定理とは 複数の電源を含む回路網のある一つの端子対からその回路を見た場合、その回路は、単一の電源(電圧源或いは電流源)と単一のインピーダンスまたはアドミタンスからなるシンプルな電源回路と等価と見なせる。 ただし、上記の定理が成り立つためには、回路網に含まれる全ての電源が同一周波数(位相は異なっていても良い)の電源であることと、回路が線形である(重ね合わせの理が成り立つ)ことが前提となる。
電気回路学 Electric Circuits 情報コース4セメ開講 等価電源の定理 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/9講義分 電磁場のエネルギー 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
演習問題1の解説 電源電圧 E, 内部インピーダンスが Z0 の電源に、伝搬定数が g , 特性インピーダンスが Z0, 長さ が l の線路が接続されている。これに等価な電圧源 を求めよ。さらに、線路が無損失なら、それはどのように表わせるか? ただし、sinh(iθ) = i sinθ, cosh(iθ)
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
電気回路学I演習 2012/11/16 (金) I1 I2 問1 Z0 V1 V2 問2 I1 I2 V1 Z0 V2 Z,Y,K行列の計算
コンピュータサイエンスコース 知能コンピューティングコース ナノサイエンスコース 山田 博仁
インピーダンスp型回路⇔T型回路間での変換
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
連絡事項 ・ 電気回路学定期試験は、四クラス統一で2/9(金)に実施の予定
円線図とは 回路の何らかの特性を複素平面上の円で表したもの 例えば、ZLの変化に応じてZinが変化する様子 Zin ZL
電気回路学 Electric Circuits 情報コース4セメ開講 F行列 山田 博仁.
C:開放,L:短絡として回路方程式を解く
電気回路学 Electric Circuits 情報コース4セメ開講 分布定数回路 山田 博仁.
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
線路上での電圧、電流 Ix I0 添え字は、線路上での位置を表わす ZL γ, Z0 Vx V0 x x = 0
電磁気学C Electromagnetics C 5/20講義分 電磁場の波動方程式 山田 博仁.
電源の内部インピーダンス(抵抗)とは? 乾電池(1.5V)の等価回路を描いてみよう もし、等価回路がこのようなら、
電磁気学C Electromagnetics C 7/10講義分 電気双極子による電磁波の放射 山田 博仁.
二端子対網の伝送的性質 終端インピーダンス I1 I2 -I2 z11 z12 z21 z22 E ZL: 負荷インピーダンス V1 V2
F行列 電気回路の縦続接続を扱うのに常に便利、電気回路以外でも広く利用 A B C D V1 V2 I2 I1
電磁気学Ⅱ Electromagnetics Ⅱ 6/11, 6/18講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/7講義分 電磁波の反射と透過 山田 博仁.
電磁気学C Electromagnetics C 6/24講義分 共振器と導波路 山田 博仁.
Presentation transcript:

理想線路 R = G = 0 と仮定すると、無損失(a = 0)かつ無歪となり、理想線路と呼ばれている また、 よって、 減衰極小条件 R と G を一定として L および C を変化させた場合に、a が極小になる条件は、g をL または C で微分して、 となるためには、Z0は実数 であるから、 であれば、Z0は実数となる 従って、 となり、 C で微分した場合も同様に、 上記の条件が満足されればa が極小になる

無歪線路 f(t) g(t) t t A0 t0 無歪線路の条件 (ⅱ) 位相定数は周波数に比例する (或いは、位相速度 vp が一定である) 伝送線路のパラメータとしてこの条件を与えるには、 ・ a が一定 ・ b が w に比例 ・ Z0が一様 Z01 Z02 Z03 一様でないと不連続点で反射が起こる t + は無歪の条件でもある

装荷線路 装荷ケーブル 通常の架空伝送線路では、Gが非常に小さいため となり、無歪や減 衰極小条件からは大きくかけ離れたものとなっている。そこで、      に近 づけるために、線路の途中に L を装荷したものを装荷ケーブルと言い、伝送距離を大きく延ばすことができたために、真空管が発明される以前には広く使われていた。しかし、真空管による電気信号の増幅が可能になってからは、次第に下記の無装荷ケーブルに置き換わっていった。現在ではさらに同軸ケーブルによる伝送が主流となっている。 L 松前重義 1901-1991 無装荷ケーブル  松前重義氏がその発明と実用化に大きく貢献  興味がある方は、以下のページを参照 http://www.u-tokai.ac.jp/about/movie/history/index.html

複合線路 2種類の線路の縦続接続 V0 I0 I2(x) I1(x) ZL Z01 g1 Z02 g2 V2(x) V1(x) x = 0 各々の線路上の電圧、電流 および Z01 g1 Z02 g2 接続点(x = 0)での電圧、電流 電圧および電流ベクトルの方向 電圧波および電流波の進行方向 ただし、 (9.1)式 (9.2)式

複合線路 負荷インピーダンス ZLが第二の線路の特性インピーダンス Z02に等しいか、或いは第二の線路が無限に長いとき、第二の線路上に反射波はない。 Z02 x=0 Z01 g1 g2 V0 I0 即ち、 従って、 両式より     を消去すると、 電圧反射係数 電流反射係数 両式より     を消去すると、 電圧透過係数 電流透過係数

複合線路 接続点における電圧 V0および電流 I0によって、各線路上の電圧および電流を表せば、 より、 上式を(9.1)式、(9.2)式に代入して、 入射電圧波 反射電圧波 入射電流波 反射電流波 一様な線路上の任意の点には入射波と反射波が存在するかも知れないが、一様な線路の途中で反射波が生じることはなく、その反射波は、線路の不連続点(受電端とか接続点とか)において発生した反射波が、その点を通って送電端の方へ戻っていく途中のものである。

3種類の線路の縦続接続 Z03 x = 0 Z01 g1 g3 Zi l Z02 g2 x = - l G23 無反射 各線路上の電圧 Vn(x) (n = 1, 2, 3)および電流 In(x) (n = 1, 2, 3)は、 負荷を第 3の線路の特性インピーダンス Z03に等しいとすると、 第2と第3の線路の接続点(x = -l)における反射係数 G23は、 第1と第2の線路の接続点(x = 0)より右を見たインピーダンス Ziは、

3種の線路の縦続接続 従って、x = 0の点において、第1の線路から見た反射係数 G は、 ただし、

3種の線路の縦続接続 ただし、 Z03 x = 0 Z01 g1 g3 l Z02 g2 x = - l G23 1次反射 送電端より 1 受電端へ 1次伝達波 2次反射 3次反射 2次伝達波 3次伝達波

複合線路と縦続行列 Z01, g1 Z02, g2 l1 l2

インピーダンス整合 例 9.1.1 特性インピーダンスが Z01および Z02の線路の間に、特性インピーダンス Z0, 伝搬定数 g0 = jb, 長さ l の無損失線路を挿入し、 Z01, g1 Z0, b0 l Z02, g2 Z1 Z2 Z01の線路との接続点から右方を見たインピーダンスを Z1 Z02の線路との接続点から左方を見たインピーダンスを Z2 ここで、l = l/4であるように長さを定めれば、 であるから、 となり、 のとき、 となる これを、インピーダンス整合と呼ぶ

無損失線路の伝送式 V0 I0 Vx Ix x x = 0 Z0 g p.170 式(8.25) R = G = 0の線路、即ち無損失線路では a = 0より、g = jbとなり、任意点 x (受電端をx = 0)における電圧、電流は以下の式で与えられる。 ただし、V0, I0は受電端の電圧、電流 の公式を使用した 入射波と反射波成分で表せば、 p.169 式(8.23)参照

無損失線路の伝送式 上式を、受電端における電圧反射係数 で表せば、 (8.22)式, (8.19)式参照 ただし、 上式を、受電端における電圧反射係数          で表せば、 (8.22)式, (8.19)式参照 ただし、 (点 x における入射電圧波) (受電端 x = 0 における入射電圧波)

無損失線路の伝送式 また、点 x における反射係数         は、 (点 x における入射電圧波) (点 x における反射電圧波) を用いて表せば、

線路上の電圧、電流の円線図 受電端の反射係数G0を極形式で表すと、 Vx と Z0Ix とを、   を基準フェーザにとって作図すると、下図のようになる。 VxがZ0Ixに対して位相が進んでいる場合: 誘導性、遅れている場合: 容量性

線路上の電圧、電流の円線図 x の場所を動かしていくと、下図のように Vx と Z0Ix とが同相になることがある。 この時、点 x から受電端を見たインピーダンスは純抵抗 R になる。 この時、 Vx と Z0Ix は、最大値(Vmax, Z0Imax)或いは最小値(Vmin, Z0Imin)をとる より、

線路上の電圧、電流の円線図 2つの観測点 x1 と x2 における電圧と電流の関係がちょうど下図のようになった時、 p x = x1 p x = x1 x = x2 ZL Z0 x = 0 Vmin Vmax x1 x2 Vx l/4 2点間の距離は、

線路上の電圧、電流の円線図 先の円線図の関係より、 或いは、 従って、l/4だけ離れた各々の点から受電端の方を見た2つのインピーダンスは、互いに逆回路の関係にある さらに、 より、 l/4だけ離れた2点における反射係数の符号は反対になる 大きさについては、無損失線路の場合、線路上至るところで (ZL = Z0)の場合 (ZL = jX)の場合

定在波比 無損失線路の受電端に任意の負荷 ZL を接続すると、線路上の電圧 Vx および電流 Ix は、l/4間隔ごとに最大値と最小値を繰り返し、電圧が最大(小)値となる点では電流が最小(大)値をとる。 Vmax Vmax 定在波比 (SWR または VSWR) Vx Vmin SWR: Standing Wave Ratio Z0 ZL VSWR: Voltage Standing Wave Ratio l/4 l/4 x=0 定在波比SWRと反射係数G0との関係は、

定在波による負荷の測定 無損失線路(a = 0)の受電端 x = 0に負荷 Zrを接続したとき、線路上の任意の点より負荷の方を見た駆動点インピーダンスは、 よって、 Zr Z0 x = 0 Vmax Vmin xmax xmin jb さらに、 Z0と bの値が既知の線路を用いて、SWRと xmax 或いは xminを測定することにより、Zrの値を求めることができる

電気回路学I演習 2012/1/13 (金) ※ 1/19の出席レポート問題です。〆切: 1/26(木) 分布定数線路 電源 受電端 分布定数線路(その1) (Z0 , V0 , a, b はいずれも正の実数) 分布定数線路 + - 電源 受電端 Zg 問1. 上の回路の受電端に負荷 Z0 を接続したところ、負荷の両端にフェーザ電圧 V0 が現れた。 x=l の位置での電圧 V(l) と電流 I(l) を Z0, V0, g の式で表せ。 問2. 受電端を短絡した。受電端及び x=l の地点での   と   を求めよ。 問3. 受電端にキャパシタ jwC を接続したところ、x=l の位置における駆動点インピーダンスが 0W になったという。 l はいくらか。(ただし a=0 とする。)

問4. 下図の2つの回路のインピーダンス Z1 と Z2 が等しくなる条件を求めよ. ただし線路は無損失( a=0 )とする. 開放

最終回出席レポート問題 特性インピーダンス Z0 = 300[Ω] の無損失線路が、負荷インピーダンス ZLで終端されている。負荷から1/4波長離れた点から負荷を見たインピーダンス Z を測定したところ、Z = 200 + j150[Ω]であった。ZLはいくらか。 ※ 〆切: 2/3(金)までに研究室に持参か、私のメールボックスに投函のこと

1/12出題レポート問題の解説 全長400kmの線路がある。その受電端を短絡した場合、送電端から見たインピーダンスの値が j250Ω、また受電端を開放した場合、送電端から見たアドミタンスの値が j1.5×10-3 Ʊであった。この線路の伝搬定数 γ 、特性インピーダンス Z0、および1km当たりのリアクタンスX、サセプタンスBを求めよ。 400km Il V0 = 0 Vl ZS = j250 Ω g Z0 短絡 l = 400km I0 = 0 Yo = j1.5×10-3 Ʊ g Z0 開放 V0 = 0 のとき I0 = 0 のとき

1/12出題レポート問題の解説 従って、 また、 より、 従って純虚数となるためには、α = 0でなければならず、 よって、 γ ≈ j1.37×10-6 m-1 α = 0ということは、R = G = 0、つまり、無損失線路である 従って、 上式を解いてやれば、X= 0.56 Ω/km、 B= 3.4×10-6 Ʊ/km が求まる