電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁
RL微分回路と積分回路 RL微分回路 L R vL e(t) vR 電圧 e(t) が、時間幅 a, 高さ E0 の方形パルスであるときの、RL直列回路の応答を考える。電圧は、 と表されるから、 ラプラス変換は、表5.2(2)に変位定理を適用して、 である。 (a) このような入力に対して、出力としてコイル L の両端の電圧 vL(t) をとることにする。 回路方程式 をラプラス変換すると、 初期条件 i(0) = 0 と置いて、 ただし、
RL微分回路と積分回路 従って、ラプラス逆変換を求めると、 となる。
RL微分回路と積分回路 従って、コイル L の両端の電圧 vL(t) は、 となり、これを図示すると以下の波形となる。 この波形は、前回出てきたRC微分回路の vR(t) と同じ形をしているため、τ << a の場合、微分回路になる。 この回路の伝達関数 HL(s) は、 従って、s → jω と置いて、
RL微分回路と積分回路 従って、高域通過形回路であることが分かり、振幅特性 |VL/E| および位相角 (π/2 ‒ θ) の特性の概略を下図に示す。 RL積分回路 一方、出力として抵抗 R の両端の電圧 vR(t) をとると、 となり、これを図示すると右のような波形となる。 上式は、RC積分回路の vC(t) と一致するから、 τ >> a の場合、積分回路になる。
RL微分回路と積分回路 伝達関数 HR(s) は、 従って、s → jω と置いて、 となる。振幅特性 |VR/E| および位相特性 θ を右図に示す。低域通過形回路であることが分かる。
二次系の伝達関数 二次系の伝達関数 RLC直列回路などでは、その伝達関数 H(s) が、 ζ, ω0 は共に実定数である。そのような系を総称して二次系と呼んでいる。ω0 は共振角周波数(natural frequency)、 ζ は減衰率(damping factor)と呼ばれている。また、分子の係数 ω02 は、H(0) = 1 となるよう規格化したものである。 二次系を単位ステップで励振したときの応答 v0(t) (ステップ応答)は、全ての初期条件を 0 と仮定して、t > 0 について、 と得られる。
二次系の伝達関数 v0(t) の時間変化 ‒40dB/dec |H(jω)| の振幅特性
RLC直並列回路 RLC直並列回路 L R0 e(t) C R v0(t) 図に示すようなRLC直並列回路を電圧源 e(t) によって励振したときの、R の両端に現れる電圧 v0(t) を求める。簡単のために、最初から全ての初期条件を 0 として、電圧、電流はそれらのラプラス変換で考える。 L[e(t)] = E(s), L[v0(t)] = V0(s), R, L, C を流れる電流のラプラス変換をそれぞれ IR(s), IL(s), IC(s) として、 の関係が成り立つから、 IR, IL, IC を消去すれば、伝達関数として、 ただし、 が求まる。
RLC直並列回路 この、ω0 に対応する周期 T0 = 2π/ω0 を共振期間と呼ぶことがある。また、2ζ ω0 の値から はちょうど、回路の Q を与える。 e(t) が単位ステップ即ち E(s) = 1/s のときの応答 v0(t) を求める。 となるから、 (a) 臨界減衰(ζ = 1 或いは )の時、 表5.2の(5)より、 従って、
RLC直並列回路 (b) 過減衰(ζ > 1 或いは )の時、 表5.2の(32)より、 従って、
RLC直並列回路 (c) 振動減衰(ζ < 1 或いは )の時、 表5.2の(32)より、 従って、 となる。
RLC直並列回路 例題7.5.1 振動減衰の場合、ζ ω0t1 = 1 を満たす時刻、即ち t1 = 1/ζ ω0 では、v0(t1) の振幅は、時刻 t = 0 の時の振幅の 1/e になる。 振幅 t = 0 ~ t1 の間にv0(t) が振動する回数を k とすれば、 ζ << 1 ならば と見なせるので、2πk ≈ ω0t1 =1/ζ である。 従って、先に示した の関係を用いると、 または の関係が得られる。