担当者 河田正樹 E-mail kawada@tokuyama-u.ac.jp 2017年度 統計学講義内容 担当者 河田正樹 E-mail kawada@tokuyama-u.ac.jp.

Slides:



Advertisements
Similar presentations
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
Advertisements

計量的手法入門 人材開発コース・ワークショップ (IV) 2000 年 6 月 29 日、 7 月 6 ・ 13 日 奥西 好夫
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
2006 年度 統計学講義内容 担当者 河田正樹
統計学入門2 - 後期 第 1 回 - 1 統計学入門2 講義内容の紹介 推測統計とは. 統計学入門2 - 後期 第 1 回 - 2 教科書 & 参考書 教科書 特に使用しない 参考書 「統計解析の基本と仕組み」 ( 秀和システム ) 「データ分析のための統計入門」(共立出版)
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
2016 年度 計量経済学 講義内容 担当者: 河田 正樹
生体情報論演習 - 統計法の実践 第 1 回 京都大学 情報学研究科 杉山麿人.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第2章 全数調査と標本調査 ー 経済統計 ー.
第4章補足 分散分析法入門 統計学 2010年度.
担当者 河田正樹 2016年度 統計学講義内容 担当者 河田正樹
入門 計量経済学 第02回 ―本日の講義― ・マクロ経済理論(消費関数を中心として) ・経済データの取得(分析準備) ・消費関数の推定
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
第1章 統計学の準備 ー 計量経済学 ー.
検定 P.137.
第2章 全数調査と標本調査 ー 経済統計 ー.
実証分析の手順 経済データ解析 2011年度.
統計学 12/3(月).
標本の記述統計 専修大学 経済学部 経済統計学(作間逸雄).
月曜3限 1132教室 担当者: 河田 正樹 年度 経済データ解析講義内容 月曜3限  1132教室 担当者: 河田 正樹
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
経済統計 第三回 5/1 Business Statistics
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計学 11/30(木).
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
担当者 河田正樹 2011年度 統計学基礎講義内容 担当者 河田正樹
本時の目標 標本調査の意味を知り、全数調査と標本調査の違いを理解する。
統計的推論 正規分布,二項分布などを仮定 検定 統計から行う推論には統計的( )と統計的( )がある 推定
1. 保健統計とは何か 保健統計 2010年度.
第3章 統計的推定 統計学 2008年度.
担当者: 河田 正樹 年度 経済統計講義内容 担当者: 河田 正樹
担当者: 河田 正樹 年度 経済統計講義内容 担当者: 河田 正樹
行動計量分析 Behavioral Analysis
1. 保健統計とは何か 保健統計 2012年度.
第5章 回帰分析入門 統計学 2006年度.
経済データのダウンロードと グラフの作成 経済データ解析 2011年度.
統計解析 第10回 12章 標本抽出、13章 標本分布.
メディア学部 2011年9月29日(木) 担当教員:亀田弘之
月曜3限 1141教室 担当者: 河田 正樹 年度 経済データ解析講義内容 月曜3限  1141教室 担当者: 河田 正樹
担当者: 河田 正樹 年度 経済統計講義内容 担当者: 河田 正樹
統計リテラシー育成のための数学の指導方法に関する実践的研究
確率と統計 Probability & Statistics
確率と統計 Probability & Statistics
担当者: 河田 正樹 年度 経済統計講義内容 担当者: 河田 正樹
担当者: 河田 正樹 年度 経済統計講義内容 担当者: 河田 正樹
第2章 全数調査と標本調査 ー 経済統計 ー.
担当者 河田正樹 2018年度 統計学基礎講義内容 担当者 河田正樹
担当者 河田正樹 2010年度 統計学基礎講義内容 担当者 河田正樹
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
経済データのダウンロードと グラフの作成 経済データ解析 2009年度.
担当者: 河田 正樹 年度 経済統計講義内容 担当者: 河田 正樹
担当者: 河田 正樹 年度 経済統計講義内容 担当者: 河田 正樹
第3章 統計的推定 (その1) 統計学 2006年度.
担当者: 河田 正樹 年度 管理工学講義内容 担当者: 河田 正樹
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
担当者 河田正樹 2012年度 統計学講義内容 担当者 河田正樹
1. 保健統計とは何か 保健統計 2013年度.
担当者 河田正樹 2008年度 統計学講義内容 担当者 河田正樹
第4章 統計的検定 (その2) 統計学 2006年度.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
クロス表とχ2検定.
第2章 全数調査と標本調査 ー 経済統計 ー.
統計学  第9回 西 山.
数理統計学 西 山.
担当者: 河田 正樹 年度 管理工学講義内容 担当者: 河田 正樹
担当者 河田正樹 2009年度 統計学講義内容 担当者 河田正樹
回帰分析入門 経済データ解析 2011年度.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
Presentation transcript:

担当者 河田正樹 E-mail kawada@tokuyama-u.ac.jp 2017年度 統計学講義内容 担当者 河田正樹 E-mail kawada@tokuyama-u.ac.jp

このスライドの内容 統計学とはどのようなものか 経済学と統計学   データの収集、分析をおこなう統計学は、学問として存在しているばかりでなく、日常生活の中で無意識のうちにその考え方が用いられているものである。 経済学と統計学   経済学部という文系の学部で、統計学という数学のようなものはあまり関係ないように思われる。しかし、経済学を学ぶ上で、統計学は非常に重要なものであり、現実経済の把握や将来の予測には統計学が必ず用いられる。

直観的であいまいな観察に、客観性を与えてくれる。 統計学とはどのようなものか a) 統計学の考え方  (問) 大学から徳山駅まで、車で何分かかるのを知りたい。      どのようにすれば知ることができるだろうか? いつも大体、15分ぐらいで着く。    ⇒ 15分というのはきちんと測定した数値ですか? 実際に車で走ってみた。そのとき16分30秒かかった。    ⇒ 実際に測定した数値ですが、1回だけ良いのでしょうか? ※ 数多くの観察(実験)をおこなった結果、大学から駅まで何分かかるかを知ることができる。 直観的であいまいな観察に、客観性を与えてくれる。

駅まで車で何分かかるかを、わざわざ多数観察することは必要か?    ⇒ 必要と思う人と、思わない人がいるであろう。    ⇒ しかし、駅までの所要時間が分かれば、効率的に行動することができる。    ⇒ 実際に測定すべきか、なんとなくの時間でよいかは、その人の状況によって       異なる。 この観察をおこなうときに、「時間帯」、「時期」、「曜日」、「天候」などについても同時に観察することも考えられよう。 これらのデータの間にから何を見出せるのであろう? ⇒ (例) 雨の日は通常より時間がかかる       夕方は日中より時間がかかる   など われわれは、得られたデータ間に見いだされた関係から、将来より効率的に行動するために、何を学びうるであろうか?    ⇒ (例)雨の日や夕方に大学から駅まで車で行くときには、所要時間が多くかかることを予測し、行動することが効率的である。

統計学 「経験」を効率的に整理する(少ない経験で、豊富な経験と同等の知識を持つ)ためには、統計学の助けが必要不可欠である。 統計学とは、分析目的に対応してデータを収集し、分析することによって、予測や意思決定のための材料を提供する学問である。 統計学 予測・ 意思決定 分析目的 データの収集 分析

データを収集し、分析する統計学の立場には次の2種類が考えられる。 b) 記述統計と推測統計  データを収集し、分析する統計学の立場には次の2種類が考えられる。 まず、得られたデータの特徴を何らかの数値(例えば平均)や表・グラフにまとめたりすることが考えられる。   ⇒ 記述統計(または統計的記述)という。 次に、データの記述にもとづき、そのデータを生成した集団や構造(これを母集団という)についての推論をおこなうことが考えられる。   ⇒ 推測統計という。

あるクラスのテストの点数が次のようになっていたとする。 1) 記述統計の例 あるクラスのテストの点数が次のようになっていたとする。 39, 22, 67, 60, 43, 20, 46, 47, 20, 30 63, 69, 78, 88, 73, 20, 58, 87, 47, 75 44, 69, 34, 20, 17, 63, 36, 7, 27, 21 44, 66, 33, 54, 34, 69, 60, 23 このような数字の羅列だけでは、このクラスの特徴をとらえることは難しい。そのため、このクラスの特徴を何らかの数値であらわしたり、表・グラフにまとめたりする、記述統計の助けが必要である。

クラスの特徴を、特性値(統計量ともいう)といわれる数値であらわしたり、度数分布表とヒストグラムといった表やグラフにまとめてみる。 特性値(統計量) 度数分布表 ヒストグラム

そのほか、今まで見慣れている、さまざまなグラフをとりあげる。どのような場合にどのグラフが有効であるか、再整理する。 折れ線グラフ 棒グラフ 出典:総務省統計局『労働力調査』 仮想データから作成 円グラフ 帯グラフ 仮想データから作成 出典:総務省統計局『国勢調査』

ˆ 推論 x p 2) 推測統計の例 母平均 μ 母比率 p 標本平均 標本比率 母数 θ 標本統計量 t 母集団(個体数N) 2) 推測統計の例 母集団(個体数N) 母集団 - 知りたい対象の集まり 標本 - 母集団から抜き出されたその一部      ×   ×     ×      ×   ×   ×    × 標本(個体数n)    ×  ×   ×    ×  全数調査 - 母集団の全てについて調査をおこなうこと 標本調査 - 母集団から抜き出された一部について調査をおこなうこと 推論 母平均 μ 母比率 p 標本平均 標本比率 x ˆ p 母数 θ 標本統計量 t 標本統計量をもとに、母数についての推論をおこなうのが推測統計である。

晴れた日の夕方のバスの所要時間を知りたいとする。  晴れた日の夕方のバスの所要時間を知りたいとする。  晴れた日の夕方に走るすべてのバスについて、所要時間のデータを収集することは不可能である。このとき、たとえば10日間に乗ったバスを標本(サンプル)として考える。 母集団(晴れた日の夕方のバス全体)      ×   ×     ×      ×   ×   ×    × 標本(乗ったバス10回)    ×  ×    推論 平均所要時間 μ 平均所要時間 x 少ない「経験」をもとに、多くを経験した場合のことを推論する。

標本から得た母集団についての情報は、誤差を持っている。 3) 推測統計の注意点 標本から得た母集団についての情報は、誤差を持っている。 たとえば、晴れた平日の夕方にAさんとBさんがそれぞれ別の日にバスに乗ってデータ収集をおこなう。 Aさんは10回乗ったところ、目的地まで平均15分でついた。 Bさんは運の悪い人で、乗ったバスが信号に何度もつかまり、10回乗ったところ平均時間は20分であった。 母集団(晴れた日の夕方のバス全体)   ×  ×    標本1(Aさんの乗ったバス10回) 平均15分      ×   ×     ×      ×   ×   ×    ×  ×    ×    標本2(Bさんの乗ったバス10回) 平均20分

⇒ 選んだ標本(サンプル)から求めた平均所要時間には誤差がある。  ⇒ 選んだ標本(サンプル)から求めた平均所要時間には誤差がある。  ⇒ 標本誤差(標本の偏り)の問題   ※ 内閣発足直後、新聞各社は支持率調査をおこなうが、各社ごとにその結果が異なる。それはこの標本誤差(標本の偏り)の問題による。 推測統計では、標本から得られる情報にもとに、確率を用いて、誤差の大きさを評価し、母集団についての情報を推論する。

2012年12月28日付の朝刊各紙に掲載された第2次安倍内閣支持率を見ると、異なった結果になっている。 <第2次安倍内閣発足直後の支持率の例> 母集団(有権者1億人)   ×  ×    標本1(朝日990人) 59%      ×   ×     ×      ×   ×   ×    ×  ×    ×    標本2(読売1039人) 65%   ×  ×    標本3(毎日856人) 52% 2012年12月28日付の朝刊各紙に掲載された第2次安倍内閣支持率を見ると、異なった結果になっている。 同じ対象に同じ調査をおこなっても、標本によってその結果が異なる。 これが、標本の偏りである。  ×    ×    標本4(日経872人) 62%   ×  ×    標本5(共同1031人) 62%

推測統計の例 -視聴率- ドラマやスポーツなどのテレビ番組の視聴率は、ビデオリサーチ社が調査している。 推測統計の例 -視聴率- ドラマやスポーツなどのテレビ番組の視聴率は、ビデオリサーチ社が調査している。 全国を各地区に分け、視聴率を調べているが、新聞などで大きく取り上げられるのは、関東地区の結果である。 関東地区の場合、約1580万世帯のうち、600世帯を標本(サンプル)として選び調査している。 母集団(1580万世帯)      ×   ×     ×      ×   ×   ×    × 標本(600世帯)    ×  ×   ×    × 

(例) 2017年3月28日放送の「2018 FIFAワールドカップ ロシア アジア地区最終予選 日本×タイ」の視聴率は20.0%であった。 テレビ局の論理  1580万世帯×0.200 ≒ 316万世帯が視聴している。  視聴率が1%増えるということは、関東地区だけで  1580万世帯×0.01 = 15万世帯増加  全国では4700万世帯×0.01 = 47万世帯(その世帯に住む人数を考えると約100万人の増加) ⇒ 標本誤差を考慮せず、標本から求めた視聴率が母集団から求めた視聴率に等しいとしている。

統計学の論理  標本の600世帯×0.200 = 120世帯が視聴しているというだけのこと。  視聴率が1%増えるということは、600世帯×0.01 = 6世帯がたまたまその番組を見ていたことである。  1%程度の視聴率は標本誤差によって変わる可能性がある。

では、標本調査で20.0%という結果を得た場合、母集団の視聴率はどの程度なのだろうか? ⇒ これに答えるのが統計的推定   ⇒ これに答えるのが統計的推定 視聴率20%以上の番組を作った場合、プロデューサーの査定にプラスになるという内規があったとする。しかし、この番組は本当に20%を超えたのだろうか?   ⇒ これに答えるのが統計的検定 ※ 2003年10月に発覚した、視聴率操作事件をおこした日本テレビプロデューサーは、視聴率のわずかな差にこだわっていたが、統計学の立場からすると、わずかな差にこだわるのはバカバカしい。

経済学と統計学 経済学を学ぶ場合、マクロ経済学やミクロ経済学などの経済理論を学ぶとともに、それらが現実経済と一致するかを検証しなくてはならない。 一致? 現実経済 経済理論

現実経済の状態を把握するために、記述統計が用いられる。 完全失業率を算出する 株価の動きをグラフ化する 所得税減税効果と、消費増大の関係について、回帰分析をおこなう。  → 所得税を○○%引き下げることによって、消費が△△%増大する さらに、現状把握をもとに予測し、意思決定をおこなうためには、推測統計が用いられる。

完全失業率は、これは日本全国15歳以上(1億人)から10万人を標本として選んだ調査の結果である。この数値が前月と比べて0 完全失業率は、これは日本全国15歳以上(1億人)から10万人を標本として選んだ調査の結果である。この数値が前月と比べて0.1%増えたところで、誤差の範囲内ではないだろうか? 所得税を○○%引き下げることによって、消費が△△%増大することが回帰分析によってわかった。しかし、この分析は標本にもとづいて分析されたものであり、実際には ± □% の誤差がある。  ⇒ 誤差をふまえたうえでの意思決定が必要

マーケティングと統計学 マーケティングと統計学は密接な関係がある。 コンビニなどのPOSシステムのデータは、天候、時間、年齢、性別などによってどのような商品が売れるのかを解析するために用いられている。 市場調査のためにアンケートをおこなう場合には、調査対象者をどのぐらいの規模でどのようにして選ぶかなどには統計学の知識が必要不可欠である。(統計的推定に含まれるサンプリング(標本抽出法)の話)

スポーツと統計学 スポーツの戦術、トレーニング方法などを科学的に解明する場合、統計学の助けが必要となる。 野球の戦術において、打率、防御率などはどの選手をどのように起用するか(打順、登板順など)に用いられるし、投手の配球を読む上で統計学は非常に役に立つ。選手の起用に際して、メジャーリーグのアスレチックスを起源とするでは「セイバーメトリクス」という統計的分析手法が出てきており、OPS(On-base Plus Slugging)という出塁率+長打率で求められる指標が、得点との関連が高いことがいわれている。 トレーニングの面では、2つのトレーニング方法があった場合、どちらがより効果的なトレーニング方法であるかなどは、統計的検定によって検証される。

講義内容 第1章 記述統計の復習 第2章 確率と確率分布 第3章 統計的推定 第4章 統計的検定 第5章 回帰分析入門