テキスト:egs5/doc/pegs_user_manual.pdf 2006年6月21日 KEK 波戸芳仁、平山英夫

Slides:



Advertisements
Similar presentations
1 エクセル (3) の目次 ②参照演算子と演算子参照演算子と演算子 ③参照セルの表示法参照セルの表示法 ④セルの参照方法セルの参照方法 ⑤エラーについてエラーについて ⑥シグマ( Σ )関数シグマ( Σ )関数 ⑦条件付書式条件付書式 ⑧問題 (1)問題 (1) ⑨問題 (2)問題 (2) ⑩問題.
Advertisements

EGS5 の導入 KEK 波戸芳仁 Last modified on 例題1 ベータ線を物質に打ち込 む ベータ線は物質で止まってしまうか?通 り抜けるか? 物質の内部でどのような反応が起こる か? ベータ線.
ユーザーコードの導入 2010 年 7 月 20 日 KEK 波戸. 例題1 ベータ線を物質に打ち込 む ベータ線 ベータ線は物質で止まってしまうか?通り抜けるか? 物質の内部でどのような反応が起こるか?
プラズマからのX線放射 X-ray Radiation from Plasmas 高杉 恵一 量子科学フロンティア 2002年10月17日.
1.ボイルの法則・シャルルの法則 2.ボイル・シャルルの法則 3.気体の状態方程式・実在気体
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
医薬品素材学 I 1 物理量と単位 2 気体の性質 1-1 物理量と単位 1-2 SI 誘導単位の成り立ち 1-3 エネルギーの単位
ブラックボックスとしてモデルをみると、本質を見逃す。
物質量 原子量・分子量・式量.
元素の周期表 教科書 p 元素を 原子番号 順に並べる 性質の良く似た元素がある周期で現れる 元素の周期律 周期表
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
第9回 星間物質その2(星間塵) 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
金箔にα線を照射して 通過するα線の軌跡を調べた ラザフォードの実験 ほとんどのα線は通過 小さい確率ながら跳ね返ったり、
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
EGSに対応した粒子軌跡と 計算体系の3次元表示ソフト - CGVIEW -
EGS5 の概要 (Electron Gamma Shower Version 5)
軌跡とジオメトリー表示プログラム CGVIEW(Ver2.2)の改良
医薬品素材学 I 4 物質の状態 4-1 溶液の蒸気圧 4-2 溶液の束一的性質 平成28年5月20日.
高エネルギー加速研究機構 放射線科学センター 波戸芳仁
福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
放射線(エックス線、γ線)とは? 高エネルギー加速器研究機構 平山 英夫.
科学的方法 1) 実験と観察を重ね多くの事実を知る 2) これらの事実に共通の事柄を記述する→法則 体積と圧力が反比例→ボイルの法則
テキストボックス、チェックボックス×2、コマンドボタンを配置する。 コマンドボタンに機能を与える
α線,β線,γ線,中性子線を止めるには?
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
電子回路Ⅰ 第3回(2008/10/20) バイポーラトランジスタの動作原理.
原子核物理学 第4講 原子核の液滴模型.
信川 正順、小山 勝二、劉 周強、 鶴 剛、松本 浩典 (京大理)
平山 英夫、波戸 芳仁 KEK, 高エネルギー加速器研究機構
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
光子モンテカルロシミュレーション 波戸、平山 (KEK), A.F.Bielajew (UM)
KEK 波戸 、平山 最終変更 テキスト:installation_guide.pdf
信川 正順、福岡 亮輔、 劉 周強、小山 勝二(京大理)
物質中での電磁シャワー シミュレーション 宇宙粒子研究室   田中大地.
放射光実験施設での散乱X線測定と EGS5シミュレーションとの比較
IAEA phase space fileを用いた X線治療シミュレーション
原子核物理学 第2講 原子核の電荷密度分布.
PEGS5の入力データ 2010年7月21日 KEK 波戸、平山.
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
光子モンテカルロシミュレーション 光子の基礎的な相互作用 対生成 コンプトン散乱 光電効果 レイリー散乱 相対的重要性
EGSに対応した粒子軌跡と 計算体系の3次元表示ソフト - CGVIEW -
「入力」はInputBoxやテキストボックスに限らず、 セルからのデータの入力や、チェックボックス等からの入力全てを含める。
化学工学基礎 −後半の後半− 第1回目講義 (2009年7月10日) 1 担当 二又裕之 物質工学1号館別館253ー3号室
Fortranについて 高エネルギー加速器研究機構 平山 英夫.
Diffusion coefficient (拡散係数)
2.4 Continuum transitions Inelastic processes
Multi-Purpose Particle and Heavy Ion Transport code System
電子後方散乱の モンテカルロ計算と実験の比較 総研大 桐原 陽一 KEK 波戸 芳仁、平山 英夫、岩瀬 広.
ユーザーコードに記述する事項の概要 2009年7月30日 KEK 波戸芳仁.
平山 英夫、波戸 芳仁 KEK, High Energy Accelerator Research Organization
Multi-Purpose Particle and Heavy Ion Transport code System
(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存
PEGS5の入力データ 2012年6月19日 KEK 波戸、平山.
電子モンテカルロシミレーション 相互作用 近似 輸送方法 Last modified
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
モル(mol)は、原子・分子の世界と 日常世界(daily life)をむすぶ秤(はかり)
近代化学の始まり ダルトンの原子論 ゲイリュサックの気体反応の法則 アボガドロの分子論 原子の実在証明.
「すざく」でみた天の川銀河系の中心 多数の輝線を過去最高のエネルギー精度 、統計、S/Nで検出、発見した。 Energy 6 7 8
これらの原稿は、原子物理学の講義を受講している
平山 英夫、波戸 芳仁 KEK, 高エネルギー加速器研究機構
ユーザーコードに記述する事項の概要 2010年7月21日 KEK 波戸.
α線,β線,γ線,中性子線を止めるには?
計算と実測値の比較 高エネルギー加速器研究機構 平山 英夫.
平山 英夫、波戸 芳仁 KEK, 高エネルギー加速器研究機構
§3.圧力を変えると.
目的とするユーザーコードを 作成するために
原子記号の復習 日本語→記号 記号→日本語   H.Kadoi.
エクセル(3)の目次 参照演算子と演算子 参照セルの表示法 セルの参照方法 エラーについて シグマ(Σ)関数 条件付書式 問題(1)
V = VW nW + VE nE ヒント P142 自習問題5・1 溶液の体積を 1000 cm3 とすると、 溶液の質量は?
Presentation transcript:

テキスト:egs5/doc/pegs_user_manual.pdf 2006年6月21日 KEK 波戸芳仁、平山英夫

PEGS5とEGS5 PEGS5入力* PEGS5 物質データ ユーザーコード* EGS5 * egs5runで指定

PEGS5用入力ファイル例 単体 化合物 混合物 固体、液体 鉄 アクリル 鉛ガラス 気体 Xe ガス CO2, H2 空気

鉄:単体・固体 ELEM: Element(単体) IAPRIM=1: 輻射阻止能の再規格化(既定値) &INP IAPRIM=1, IRAYL=1, IBOUND=0,INCOH=0,ICPROF=0,IMPACT=0 / FE-RAYLEIGH FE FE ELEM: Element(単体) IAPRIM=1: 輻射阻止能の再規格化(既定値) IRAYL=1: レイリー散乱を含める IBOUND-IMPACT:低エネルギー光子関連のフラッグ(省略可) FE-RAYLEIGH:物質の名称(ユーザーコードで使用) FE(31 カラム): 密度効果表の中のFeの名称 FE(5行目): 元素記号

エネルギー範囲 (MeV) 下限 上限 電子 AE UE 全エネルギー* 光子 AP UP ENER &INP AE=0.521, UE=50.511, AP=0.01, UP=50. / 下限 上限 電子 AE UE 全エネルギー* 光子 AP UP *静止質量(0.511 MeV)と運動エネルギーの和 例えば、運動エネルギーが100 keVの場合、全エネルギーは 0.611 MeV

Xe ガス (STP): 単体・気体 ELEM &INP RHO=5.89E-3, GASP=1.0,IAPRIM=1, IRAYL=1 / XENON-GAS-STP XE-GAS XE RHOとGASPは共通の温度に対する値を入力する。たとえば、 RHO: 標準状態(STP=0ºC, 1気圧) での密度 (g/cm3) “GASP=Gas 圧力”: 物質を “気体” として指定する。 “Gas 圧力” は、標準温度 (0ºC)での圧力(atm単位)。もし気体温度が0ºCと異なる場合には、気体の体積を一定に保ったまま気体温度を0ºCに変化させた時の圧力を計算して入力せよ。 XE-GAS(31 文字目): 密度効果表での Xe ガスの名称 XE(5行目): 元素記号

アクリル(PMMA): 化合物・固体 COMP &INP NE=3, RHO=1.19, PZ=5.,8.,2. ,IAPRIM=1, IRAYL=1 / PMMA PMMA C H O COMP: Compound(化合物) NE=3: 化合物中の元素は3 種類 RHO: 密度 (g/cm3). PZ: 化合物中の原子数の比 PMMA (31 カラム): ダミー入力. 密度効果の一般式が用いられる。 Line 5: 元素記号 (A2,1X)書式. PZと同じ順番で入力

CO2 ガス(20 ºC, 1気圧) : 化合物・気体 GASP: 0.93174 atm (=273ºC/293ºC). COMP &INP NE=2, RHO=1.977E-3, GASP=0.93174, PZ=1.,2.,IAPRIM=1, IRAYL=1 / CO2-20C CO2-GAS C O GASP: 0.93174 atm (=273ºC/293ºC). この圧力は、 20ºC、1気圧のガスを体積一定のまま0ºCに冷却したときに得られる。 CO2-GAS:密度効果表でのCO2ガスの名称

H2 Gas (STP): 化合物, 気体 単元素の分子気体 (例. H2) は化合物として扱う NE=1 はエラーになる COMP &INP NE=2, RHO=8.99E-5, GASP=1.0, IAPRIM=1, PZ=1.,1., IRAYL=1, H2-GAS-STP H2-GAS H H 単元素の分子気体 (例. H2) は化合物として扱う NE=1 はエラーになる H2-GAS (31 列目) : 密度効果表での水素ガスの名称

Lead Glass: 混合物・固体 MIXT: Mixture(混合物) NE=5: 混合物中に5 種類の元素が含まれる &INP NE=5, RHO=3.61, RHOZ=41.8, 21.0, 29.0, 5.0. 2.2, IAPRIM=1, IRAYL=1 / LEAD GLASS PB SI O K NA MIXT: Mixture(混合物) NE=5: 混合物中に5 種類の元素が含まれる RHO: 密度 (g/cm3). RHOZ: 混合部中の元素の質量比 Line 5: 元素名 (A2,1X). RHOZと同順.

空気 (20 ºC, 1気圧): 混合物・気体 RHO: 標準状態(STP=0ºC, 1 気圧)での密度 (g/cm3). MIXT &INP NE=3, RHO=1.2929E-3, GASP=0.93174, RHOZ=0.75575,0.23143,0.01282, IAPRIM=1, IRAYL=1 ,EFRACH=0.05,EFRACL=0.2 / AIR-20C AIR-GAS N O AR RHO: 標準状態(STP=0ºC, 1 気圧)での密度 (g/cm3). 20ºC, 1 気圧  GASP=0.93174 Ar は低エネルギーで重要 RHOZ: 各元素の重量比を入力。 Nが78%の場合は容積比であり、間違い。

[EOF]の位置に関連するエラー [EOF] [EOF]が最終行にある場合:正常動作 DECK &INP /END [EOF] [EOF]が/ENDと同じ行にある場合:異常終了 &INP /END [EOF] egs5job.out: PEGS5-call comes next pgs5job.pgs5lst: Stopped in pegs5 because namelist/INP/ data was missing. [EOF]の前に空白行がある場合:異常終了 (空白行)

Important modification of pegs5_user_manual.pdf EFRACH and EFRACL are no longer specified in pegs5 input. As they are automatically calculated inside program.

CALL オプション GMFP は放射長(r.l.)単位で出力される事に注意せよ。 物質データ中の評価値を出力するオプション. 例. 49.99 MeV 光子に対する鉛の平均自由行程を出力。 ELEM &INP IAPRIM=1 / PB CALL &INP XP(1)=49.99 / GMFP OPT=CALL FUNCTIONCALL: 1.95522 = GMFP OF 49/9900 GMFP は放射長(r.l.)単位で出力される事に注意せよ。

他の多くのオプション、機能についてはpegs_user_manual.pdf を参照 低エネルギー光子輸送関連のフラッグ IBOUND =1 (束縛電子コンプトン断面積) INCOH=1 (束縛コンプトン散乱角度分布) ICPROF=-3 (ドップラー広がり) IMPACT=1-6 (K殻電子衝突電離) すべて=0で無視(既定値) 他の多くのオプション、機能についてはpegs_user_manual.pdf を参照

pegs5の初歩的な練習問題 pegs5の中級練習問題 uc_examin.f を egs5run を用いて走らせよ. egs5job.outの各列の数値のエネルギー依存を説明せよ。 (グラフを作ることを推奨する) 走らせる前に uc_examin.f の次の行を削除願います (バグ) if ((estepe .gt. 0.0)) then write(nunit,1480) estepe end if pegs5の中級練習問題 uc_examin.inp 内で AE=0.721 と変更し、 uc_examin.f を走らせよ。何が変わったか?それはなぜか? Feに対する pegs5 入力ファイルを作成し、 uc_examin.f を走らせよ。元の uc_examin.inp と比べて何が変わったか? 水に対する pegs5 入力ファイルを作成し、 uc_examin.f を走らせよ。 外部の参考書などの数値と比較するなどして数値の妥当性を検討せよ。

改訂記録 22JUL2004 EGS5用記述 05AUG2005 charDに対応してEFRACはオプション化 2006-06-21 Efrac廃止を追加。練習問題を追加。[EOF]の位置に関連するエラーを追加