セラミックス 第3回目 4月 30日(水)  担当教員:永山 勝久.

Slides:



Advertisements
Similar presentations
セラミックス セラミックスの製造法 2 第 8 回 6月 11 日 ( 水). [2]セラミックスの種々の焼結法 (1)ホットプレス法(Hot Pressing:HP法)[:図 参 照] :カ-ボン製の型に原料粉末を入れ、 高周波加熱によりカ-ボン型を加熱し ながら加圧して焼結する方法 圧力:200~400kg/cm.
Advertisements

セラミックス セラミックスの物性 第 9 回 6月 1 7日 ( 水). セラミックスの物性 ーセラミックスの材料物性ー 機能大分類: ① 熱的機能 ② 機械的機能 ③ 生物・化学的機能 ④ 電気・電子的機能(含 磁気材料関連) ⑤ 光学的機能 ⑥ 原子力関連機能.
第2章.材料の構造と転位論の基礎. 2-1 材料の種類と結晶構造 体心立方格子( bcc ) 稠密六方晶格子( hcp ) 面心立方格子( fcc ) Cu 、 Ag 、 Au 、 Al 、 Ni 等 Mg 、 Zn 、 Ti 等 Fe 、 Mn 、 Mo 、 Cr 、 W 、 大部分の鋼 等 充填率.
セラミックス 第10回 6月25日(水)  セラミックスの物性②.
ー 単位認定について - (レポート課題および期末試験について)
第13章 工具材料 工具材料:硬質合金(WC、TiC)、サーメットおよびセラミック。 13.1 硬質合金の燒結機構 13.2 硬質合金の性質
元素の周期表 教科書 p 元素を 原子番号 順に並べる 性質の良く似た元素がある周期で現れる 元素の周期律 周期表
セラミックス 第3回目 4月 29日(水)  担当教員:永山 勝久.
セラミックス 第8回目 6月 8日(火)  ファインセラミックスの製造法 担当教員:永山 勝久.
セラミックス 第4回目 5月 13日(水)  担当教員:永山 勝久.
第10章 焼結体の構造 焼結体の構成:粒子、粒界、気孔 焼結体の物性を左右する微細構造パラメーター:
第2回応用物理学科セミナー 日時: 6月 2日(月) 16:00 – 17:00 場所:葛飾キャンパス研究棟8F第2セミナー室
無機化合物の構造と特性 との関係を理解する
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
基盤科学への招待 クラスターの不思議 2005年6月3日  横浜市立大学 国際総合科学部  基盤科学コース 野々瀬真司.
セラミックス 第2回目 4月 22日(水)  担当教員:永山 勝久.
HPLCにおける分離と特徴 ~逆相・順相について~ (主に逆相です)
セラミックス 第7回目 6月 1日(火)  担当教員:永山 勝久.
前回の内容 結晶工学特論 第4回目 格子欠陥 ミラー指数 3次元成長 積層欠陥 転位(刃状転位、らせん転位、バーガーズベクトル)
セラミックス 第9回 6月18日(水) セラミックスの物性.
固体電解コンデンサの耐電圧と漏れ電流 -アノード酸化皮膜の表面欠陥とカソード材料の接触界面-
電子物性第1 第6回 ー原子の結合と結晶ー 電子物性第1スライド6-1 目次 2 はじめに 3 原子の結合と分子 4 イオン結合
第3章.材料の強化機構.
空孔の生成 反対の電荷を持つイオンとの安定な結合を切る必要がある 欠陥の生成はエンタルピーを増大させる
F)無節操的飛躍と基礎科学(20世紀~) 1.原子の成り立ち:レントゲン、ベックレル、キューリ(1911) 、ラザォード、モーズリー、ユーリー(重水素、 1934)、キューリ(1935)、チャドウィック(中性子1935)、ハーン、シーボーグ 2.量子力学 :プランク(1918), アインシュタイン(1921)、ボーア(1922)、ドブローイ(1929)、ハイゼンベルグ(1932)、ゾンマーフェルト、シュレーディンガー(1933)、ディラック(1933)、ハイトラー、ロンドン、パウリ(1945)、ボルン(1
セラミックス 4月 18日(水)  担当教員:永山 勝久.
Ⅲ 結晶中の磁性イオン 1.結晶場によるエネルギー準位の分裂 2.スピン・ハミルトニアン
金属使用の歴史 ●優れた材料: 強度が高くて、一定の形を作るのが容易 ●有史以前の単体金属: 金、銀、銅、鉄、錫、鉛、水銀
4.イオン結合と共有結合 セラミックスの結合様式 [定義] (1)イオン結合・・・
セラミックス 第6回 5月27日(水).
半導体 N型半導体 P型半導体.
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
セラミックス 第7回 6月3日(水) ファインセラミックスの製造法.
セラミックス 第4回目 5月 7日(水)  担当教員:永山 勝久.
セラミックス 第4回目 5月 11日(火)  担当教員:永山 勝久.
基礎無機化学 期末試験の説明と重要点リスト
電子回路Ⅰ 第3回(2008/10/20) バイポーラトランジスタの動作原理.
原子・分子の"集合体"の科学 横浜市立大学理学部環境理学科 野々瀬真司 自然界の全ての物質 … 気体・液体・固体の3態
セラミックス 第6回目 5月 25日(火)  担当教員:永山 勝久.
セラミックス 第7回 6月4日(水) セラミックスの製造法.
結晶工学特論 第2回目 前回の内容 半導体デバイス LED, LD, HEMT 半導体デバイスと化合物半導体 種類の豊富さ、直接遷移型、
氷XI相の安定性 理化学研究所 飯高敏晃 2010年5月24日 日本地球惑星科学連合2010年大会(飯高敏晃)
セラミックス 第11回目 7月4日(水).
第6章 金属の腐食と摩擦摩耗.
平成18年度 構造有機化学 講義スライド テーマ:炭素陽イオン 奥野 恒久.
塑性加工 第1回 今日のテーマ 塑性変形とは(塑性変形した後どうなる?) (応力(圧力)とひずみ(伸び)、弾性変形) 金属組織と変形
半導体デバイスの基本構成要素 pn junction diode
分子軌道理論(Molecular Orbital theory, MO理論)
セラミックス 第6回目 5月23日(水).
最小 6.1.The [SiO4] tetrahedron
半導体の歴史的経緯 1833年 ファラデー AgSの負の抵抗温度係数の発見
セラミックス 第9回 6月 15日(火) セラミックスの物性① 担当教員 永山 勝久.
学年   名列    名前 物理化学  第2章 1 Ver. 2.1 福井工業大学 原 道寛 HARA2005.
5.建築材料の力学的性質(2) 強度と破壊 理論強度 実強度 理想的な無欠陥状態での強度 材料は原子の集合体、原子を引き離せば壊れる
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
セラミックス 第6回 5月21日(水) セラミックスの分類について①.
キャリヤ密度の温度依存性 低温領域のキャリヤ密度                   ドナーからの電子供給→ドナーのイオン化電圧がわかる                              アクセプタへの電子供給→アクセプタのイオン化電圧がわかる             常温付近                            ドナー(アクセプタ)密度で飽和→ドナー(アクセプタ)密度がわかる.
機械の安全・信頼性に関するかんどころ 機械製品に対する安全要求と設計方法 一般財団法人 機械振興協会 技術研究所.
ディラック電子系分子性導体への静電キャリア注入を目的とした電界効果トランジスタの作製および物性評価
セラミックス 第5回目 5月 14日(水)  担当教員:永山 勝久.
Bi置換したCaMnO3の結晶構造と熱電特性
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
B-Ti-Ru準結晶の発見 ・ 従来の準結晶と異なり、非金属元素であるボロンを含む ・ 従来の準結晶と比較して、
3.建築材料の密度 密度の支配因子 原子量 原子の配列状態 一般的に原子量(原子番号)が大きいほど、密度は大きい
■ 背景 ■ 目的と作業内容 分子動力学法とフェーズフィールド法の融合による 粒成長の高精度解析法の構築 jh NAH
ガスセンサーの製作 [応用物理研究室] [藤井新太郎]
Au蒸着による酸化物熱電変換素子の内部抵抗低減化効果
電子物性第1 第10回 ー格子振動と熱ー 電子物性第1スライド10-1 目次 2 はじめに 3 格子の変位 4 原子間の復元力 5 振動の波
第2章 電子工学の基礎 2.1 半導体素子 2.2 電子回路 2.3 4端子網.
学年   名列    名前 物理化学  第2章 1 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
Presentation transcript:

セラミックス 第3回目 4月 30日(水)  担当教員:永山 勝久

3.セラミックスの構造 単結晶体と多結晶体について (a)単結晶体・・・結晶中の原子配列が連続で、一つの面方位のみ有する結晶 図:セラミックスの単結晶と多結晶の構造概念図     (通常の材料の単結晶と多結晶構造) (a)単結晶体・・・結晶中の原子配列が連続で、一つの面方位のみ有する結晶 (b)多結晶体・・・種々の大きさの結晶粒の集合体で、結晶粒同士の結合界面には            結晶粒界(非整合部分)が形成される(:通常の材料) (ex.半導体Si)

多結晶体・・・種々の大きさの結晶の集合体で、結晶粒同士の結合界面には 結晶粒界が形成される        結晶粒界が形成される 結晶粒界は異なった方位を有する結晶の結合部分(非整合部)であるため、 非整合界面に起因する格子欠陥や格子ひずみなどが発生し、かつ不純物が 偏析する 多結晶体の一般的組織構造   :①気孔(pore)が存在する    ②不純物を構成主元素とした     ガラス相の形成(:焼結部分液相化)    ③冷却時に形成された微小亀裂     (凝固収縮に伴う結晶粒の異     方性により生じる微小割れ)  多結晶体中の構造欠陥(:結晶粒界,      気孔,微小亀裂,ガラス相)           ↓  強度特性を劣化させるため、高強度  セラミックス材料では気孔を減少さ  せ、結晶粒を微細化させる (粒界、粒内) 図: 多結晶体の微細構造

『単結晶体の代表材料』 半導体Si [ 図1 参照 ] Si・・・精製による高純度化→電気抵抗の増加                   99.999%:100kΩ ( 絶縁体 ) 半導体Si : 0.01% ( 1万分の1,100ppm ) の不純物ドープにより,        電気抵抗が1Ω以下 ( 10万分の1以下に低下 )  ・・・不純物ドープ:p型:3価元素添加 ( Bなど ) 電子が1個 不足 n型:5価元素添加 ( Pなど ) 電子が1個 過剰

通常冷却・・・融点以上からの徐冷→多結晶Si 単結晶Si・・・単結晶を溶融部に接触させ,融体から徐々に引下げる [ CZ法 ] (a) アクセプタとホール (b) ドナーと電子 図1 不純物半導体のホールと電子 単結晶Si の作製 ( m.p. = 1412℃ ) 通常冷却・・・融点以上からの徐冷→多結晶Si 単結晶Si・・・単結晶を溶融部に接触させ,融体から徐々に引下げる [ CZ法 ]          (工業的には直径300mmの単結晶が生産可能) 多結晶体・・・ 結晶粒 ( grain ) : 粒内の原子配列は一定 ( 整合 ) 結晶粒界 ( grain boundary ) : 原子の配列が不整合 ( エネルギーの高い状態 ) 粒界・・・電子の運動を妨害する ( 易動度,mobilityが低下 ) 半導体・・・ドープした微量元素が粒界に集中し,粒内での効果が発生しないため単結晶化する

※ 単結晶製造法[CZ法:チョクラルスキ-(Czochralski)法] 単結晶の種子結晶を高周波溶解や抵抗加熱法によって加熱・溶融し、  下部に設置された溶融体と接触し、上部に引上げ種子結晶と同じ方位   を有する単結晶を成長させる  ・・・半導体Si製造用装置(~10インチ・ウエハ-作製用←大口径化) 固体Si-融液Siの接触界面における結晶成長(Crystal Growth) 図 CZ法で作製したBi12SiO20単結晶  図 単結晶製造装置(チョクラルスキ-法)

半導体物質 ← (共有結合性物質の代表) = ◎半導体の推移 ・最初のトランジスタ ; Ge (Ⅳ族元素) : Ge4+ 共有結合性結晶 半導体物質 ← (共有結合性物質の代表) ◎半導体の推移 ・最初のトランジスタ ; Ge (Ⅳ族元素) : Ge4+ 共有結合性結晶 ・現在の半導体 ; Si (Ⅳ族元素) : Si4+ ・今後の半導体 ; GaAs,InP (化合物)             (Ⅲ‐Ⅴ族化合物) Ga,In ・・・ 3族元素 As,P ・・・ 5族元素 平均の原子価 : 4価 ⇒ Ge,Siと同様 GaAs,InP ・・・ 立方硫化亜鉛構造 <4面体構造を4つ有する>            (四面体構造を構成要素にもつ,立方晶型結晶) (InSb) = ダイヤモンド結晶に類似 共有結合性結晶 四面体構造 が構成要素 “4配位構造” ( :Ⅲ族原子位置, :Ⅴ族原子位置) 図6 立方硫化亜鉛構造 (・・・Ga,In) (・・・As,P)

4.イオン結合と共有結合 セラミックスの結合様式 [定義] (1)イオン結合・・・ (2)共有結合 ・・・ 陰イオンと陽イオン間での静電気力(ク-ロン力),すなわち正と負の電荷が電気的引力によって生じる結合様式 隣接原子が互いに電子を出し合って安定スピン結合状態 (↑↓) を形成し、それを共有することによって生じる結合様式[:配位結合(隣接原子間での最外核電子の交換結合・・・半導体Siの結合様式] イオン結合性結晶・・・酸化物系セラミックス 共有結合性結晶 ・・・非酸化物系セラミックス     (半金属-非金属:Si3N4、SiC、BN 金属-非金属:AlN、TiC、TiB2など) 共有結合力>イオン結合力 ∴共有結合性結晶は焼結性が困難(粒同士の反応性に欠ける)で、通焼結性向上を 目的として焼結助剤を添加したり、あるいは高圧力下での焼結法(ホットプレス,HIP法など)が行われている