1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。

Slides:



Advertisements
Similar presentations
統計学勉強会 ~カイ二乗検定~ 地理生態学研究室 3 年 髙田裕之. カイ二乗検定とは 期待値・理論値が存在するときに用いる。 一般的にはピアソンのカイ二乗検定のことを指す。 ノンパラメトリックな検定である。 適合度検定と独立性検定がある。
Advertisements

母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
第6回授業( 5/15) の目標 先回の第1章の WEB 宿題実行上の注意。 第3章の区間推定の基本的考え方を学ぶ(こ の途中までで、終了)。 第3章の母平均の区間推定に必要な数表の見 方を知る(岩原テキスト、 p.434, t- 分布表)。 テキスト p.13 の信頼区間はどのようにして得 られる?-信頼区間導出の概要について学ぶ。
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
4. 統計的検定 ( ダイジェスト版 ) 保健統計 2014 年度. Ⅰ 仮説検定の考え方 次のような問題を考える。 2014 年のセンター試験、英語の平均点は 119 点であった。 T 高校では 3 年生全員がセンター試験を受験したが、受験生の中から 25 人を選んで調査したところ、その平均点は.
Wilcoxon の順位和検定 理論生態学研究室 山田 歩. 使用場面 2 標本 離散型分布 連続型分布(母集団が正規分布でない時など 効果的) ただパラメトリックな手法が使える条件がそ ろっている時に、ノンパラメトリックな手法 を用いると検出力(対立仮説が正しいときに 帰無仮説を棄却できる確率)が低下するとい.
確率と統計 2007 平成 20 年 1 月 10 日 ( 木 ) 東京工科大学 亀田弘之. 復習.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4章 統計的検定 統計学 2007年度.
第4回 関連2群と一標本t検定 問題例1 6人の高血圧の患者に降圧剤(A薬)を投与し、前後の収縮期血圧 を測定した結果である。
統計的仮説検定の手順と用語の説明 代表的な統計的仮説検定ー標準正規分布を用いた検定、t分布を用いた検定、無相関検定、カイ二乗検定の説明
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
      仮説と検定.
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
データ分析入門(11) 第11章 平均値の差の検定 廣野元久.
第2回授業 (10/2)の学習目標 第5章平均値の差の検定の復習を行う。 (詳細を復習したい者は、千野のWEB頁の春学期パワ
ホーエル『初等統計学』 第8章1節~3節 仮説の検定(1)
第7回 独立多群の差の検定 問題例1 出産までの週数によって新生児を3群に分け、新生児期黄疸の
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
検定 P.137.
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
臨界値の算出法(Excelの場合) =normsinv( 確率 ) 下側累積確率Pr(z≦z0)に対応するz値
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
心理統計学 II 第7回 (11/13) 授業の学習目標 相関係数のまとめと具体的な計算例の復習 相関係数の実習.
第6章 2つの平均値を比較する 2つの平均値を比較する方法の説明    独立な2群の平均値差の検定   対応のある2群の平均値差の検定.
確率・統計Ⅱ 第7回.
統計学勉強会 対応のあるt検定 理論生態学研究室 3年 新藤 茜.
母集団平均値の区間推定 大標本の区間推定 小標本の区間推定.
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
母分散が既知あるいは大標本の 平均に関する統計的検定
統計学  西 山.
確率・統計輪講資料 6-5 適合度と独立性の検定 6-6 最小2乗法と相関係数の推定・検定 M1 西澤.
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
対応のあるデータの時のt検定 重さの測定値(g) 例:
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
Excelによる実験計画法演習 小木哲朗.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
リサーチカンファ 29 Aug, 2017.
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
確率と統計 年1月12日(木)講義資料B Version 4.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
統計処理2  t検定・分散分析.
1.母平均の検定:小標本場合 2.母集団平均の差の検定
母分散の検定 母分散の比の検定 カイ2乗分布の応用
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
確率と統計2009 第12日目(A).
統計的検定   1.検定の考え方 2.母集団平均の検定.
母分散の検定 母分散の比の検定 カイ2乗分布の応用
第4章 統計的検定 (その2) 統計学 2006年度.
クロス表とχ2検定.
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
数理統計学  第12回 西 山.
確率と統計 年12月16日(木) Version 3.
確率と統計 年1月7日(木) Version 3.
Presentation transcript:

1標本のt検定 3 年 地理生態学研究室 脇海道 卓

t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。

母集団について正規分布であるという知識 しか持たないで、母平均 μ を推定したい。 → 母平均 μ 以外は観測された標本だけを用い 計算できる検定量で、その分布がはっきり 解るようなものがあれば良い。 統計量 T を用いる!

・自由度 ある統計量を計算するために用いられる観測 データの数を表す。 大きさ N の標本から平均を推定すると N-1 の自由 度が残る。 t 検定の検定統計量の場合,母平均 μ を 1 個推定 しているので,自由度は n- 1 となる。

統計量 T は以下の手順で計算される。 正規母集団からn個のデータを観測したとする。 ステップ1 n 個データの標本平均 を計算する。 ステップ2 n 個データの標本標準偏差sを計算する。 ステップ3 標本平均 から母平均 μ を引いて、標本標 準偏差sで割り をかける。これが統計量 T となる。

t 分布 検定統計量 T の値をプロットした曲線。 自由度が高いほど尖る。

検定の手順 研究対象としての母集団に対して, 帰無仮説 H0 を立てる ↓ この母集団から標本を無作為抽出し, これらの値から検定統計量 T を計算する ↓ 検定統計量 T が棄却域に入るとき帰 無仮説 H0 を棄てる

1標本のt検定は次の検定をする。 ・1標本の t 検定は関連する 2 群の差に意味がある かどうかの検定。 例:同じ人で薬を飲む前と後で最高血圧を測定 したとする。このとき血圧の差はあるか。 ・正規分布に従う母集団の平均が、特定の値に等 しいかどうかの検定。 例:医学書の人間の体温の平均は東邦大生に当 てはまるのか。

・仮説の設定 帰無仮説 (H 0 ) 「 2 群間に差がない」 (μ=μ ) と仮定する。 対立仮説 (H 1 ) 「 2 群間に差がある」 (μ≠μ ) と仮定する。 0 0

・確率を求める 各ペアの差を求め、この平均値を統計量とし、 検定量 T を出す。 このとき、求められた検定量は、自由度 df = n-1 の t 分布に従い、 t 分布表から t α の値を求め る。 :標本平均 S:標準偏差 n:データ 数

・判定 | t |≦ t α のとき P ≧ α となり帰無仮説を棄却できない。 | t |> t α のとき P < α となり帰無仮説を棄却する。

この式を μ について解けば、 95% 信頼区間が求められ る。

例題 コンピュータのある部品 M の製品仕様によると, この部品の直径は 15.4 インチとなっ ている.最近製造された部品 M からランダムに 9 個を取り出したところ { } となった.この部品 M は仕様通りに製造されて いると言えるか?

・仮説を立てる 母集団:コンピュータの部品 M の直径 帰無仮説 H0 :母平均 μ15.4 部品 M の直径は「 15.4 インチより大きくても小 さくてもいけない」ので,帰無仮説 H0 に対する対立仮説は … 対立仮説 H1 :母平均 μ15.4

標本平均と標本標準偏差を求め、統計量tの式に代入 する。 に代入。 t= となる。

この検定統計量 T は自由度( 9 - 1 )の t 分布に 従う 有意水準 α=0.05 のときの, 自由度( 9 - 1 )の t 分布の棄却域をt分布表か ら求める。 → | t| = > であるから、帰無仮説 は棄却される。 結果、対立仮説は採択され、部品 M は仕様通 りに製造されていないと言える。