土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.

Slides:



Advertisements
Similar presentations
計測工学 - 測定の誤差と精度 2- 計測工学 2009 年 4 月 28 日 Ⅱ限目. 授業内容 2.1 数値計算における誤差 2.2 計算過程での誤差 2.3 測定の精度.
Advertisements

統計学の基礎 -何を学ぶか。 何ができるようになるか-. データとは何か 母集団と標本(サンプル)、データの関係 統計的方法を用いることにより、統計量から母数について どれほどのことが言えるか、知ることができる。 2.
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
計量的手法入門 人材開発コース・ワークショップ (IV) 2000 年 6 月 29 日、 7 月 6 ・ 13 日 奥西 好夫
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
行動計量分析 Behavioral Analysis
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
統計的仮説検定の手順と用語の説明 代表的な統計的仮説検定ー標準正規分布を用いた検定、t分布を用いた検定、無相関検定、カイ二乗検定の説明
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
経済統計学 第2回 4/24 Business Statistics
数理統計学(第四回) 分散の性質と重要な法則
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
標本の記述統計 専修大学 経済学部 経済統計学(作間逸雄).
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
Bassモデルにおける 最尤法を用いたパラメータ推定
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
第3章 統計的推定 統計学 2008年度.
行動計量分析 Behavioral Analysis
第3章 二つの変数の記述統計 二つの変数を対象として変数同士の関係を捉える 量的変数どうしの関係 質的変数どうしの関係.
確率・統計輪講資料 6-5 適合度と独立性の検定 6-6 最小2乗法と相関係数の推定・検定 M1 西澤.
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学 11/08(木) 鈴木智也.
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
データのバラツキの測度 レンジと四分位偏差 分散と標準偏差 変動係数.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
ガウス過程による回帰 Gaussian Process Regression GPR
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
相関分析.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
混合ガウスモデルによる回帰分析および 逆解析 Gaussian Mixture Regression GMR
代表値とは 散布度とは 分布のパラメータ 母集団とサンプル
確率論の基礎 「ロジスティクス工学」 第3章 鞭効果 第4章 確率的在庫モデル 補助資料
第3章 統計的推定 (その1) 統計学 2006年度.
中澤 港 統計学第4回 中澤 港
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
土木計画学 第2回:10月5日 計画における調査法 担当:榊原 弘之.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
母分散の信頼区間 F分布 母分散の比の信頼区間
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
最尤推定・最尤法 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
統計学  第9回 西 山.
数理統計学 西 山.
情報の集約 記述統計 記述統計とは、収集したデータの分布を明らかにする事により、データの示す傾向や性質を要約することです。データを収集してもそこから情報を読み取らなければ意味はありません。特に膨大な量のデータになれば読みやすい形にまとめて要約する必要があります。
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
統計現象 高嶋 隆一 6/26/2019.
混合ガウスモデル Gaussian Mixture Model GMM
Presentation transcript:

土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之

標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率 P ? わからない! Population

標本から母集団のパラメータを推定するための手法 統計的推定手法 ( Statistical estimation ) 標本調査における利用法 ・必要な標本数の算出 ・推定値の信頼区間の算定 統計的手法を用いれば,標本調査でも十分実用に耐える 結果を出すことができる.

統計理論の復習 収集されたデータから特性を明らかにする. 度数分布表 (Frequency table) データが取り得る値をいくつかの区間に分けておき(カテゴライズ), 各カテゴリーに該当するデータの個数(度数)を表にまとめる. 身長度数 140cm ~ 150cm 2 150cm ~ 160cm 8 160cm ~ 170cm cm ~ 180cm cm ~ 190cm 3 ヒストグラム:度数分布を度数を高さとする長方形で表したグラフ (Histogram)

標本平均 (sample mean) i 番目の観測値 メディアン(中央値) (median)m モード (mode) (最頻値) 代表値の例 i 番目の観測値の度数 50 パーセンタイル値 度数が最大となる観測値 パーセンタイル (percentile)

散布度( dispersion )の指標 分散 (variance) 2 乗の平均-平均の 2 乗 標準偏差 (standard deviation) 変動係数 (coefficient of variation)

共分散 (covariance) 相関係数 (correlation coefficient) 複数の調査項目間の相関の有無の検討 クロス集計表( p80 )

大数の法則 (law of large numbers) 同一の確率分布(期待値 μ ,標準偏差 σ )に従う n 個の 確率変数 X 1,X 2,…,X n の標本平均 は, n が大きくなれば,限りなく μ に近づく. 後の統計的推測に重要 観測数を増やせば,より正確な期待値の推定が可能となる.

さいころの目の標本平均の推移 (エクセルによる計算) 回数が増えるほど,母平均 3.5 に収束

正規分布(ガウス分布) (normal distribution) 確率密度関数 期待値 分散 期待値 0 ,分散 1 の場合 標準正規分布 を正規分布表に当てはめる 配布資料参照 正規分布の 分布関数の値

確率密度関数 分布関数

正規分布が重要な理由 1.観測誤差の分布がよく適合する. 平均を中心に,左右に同じように 広がっている 例1:部材の強度 平均よりも強い部材,弱い部材が存在 例2:離散選択モデル (個人が複数の選択肢から一つを選択する過程をモデル化) 誤差が正規分布 プロビットモデル

正規分布が重要な理由 2.中心極限定理 (central limit theorem) 同一の確率分布(期待値 μ ,標準偏差 σ )に従う n 個の 確率変数 X 1,X 2,…,X n の標本平均 は, n が大きくなれば,正規分布 N(μ,σ 2 /n) に従う. X 1,X 2,…,Xn がどのような確率分布に従う場合も成立する. 後の統計的推測に重要

母集団:直接すべて調べることができない集団 標本:調査可能な,限られた数の集団 母集団の一部 母数: 母集団の特性値 (平均,分散など) 統計的推計手法:標本から母数を推定するための手法 正確に 真の母数を 知ることはできない

大数の法則 同一の確率分布(期待値 μ ,標準偏差 σ )に従う n 個の 確率変数 X 1,X 2,…,X n の標本平均は, n が大きくなれば, 限りなく μ に近づく. 観測数を増やせば,より正確な期待値の推定が可能となる. 確率的推定の前提:大数の法則と中心極限定理 中心極限定理 同一の確率分布(期待値 μ ,標準偏差 σ )に従う n 個の 確率変数 X 1,X 2,…,X n の標本平均は, n が大きくなれば, 正規分布 N(μ,σ 2 /n) に従う. X 1,X 2,…,X n がどのような確率分布に従う場合も成立する.

不偏推定量 期待値が母数に一致するような推定量 =何度も標本抽出して当該の値を求めることを多数回 繰り返せば目的とする母数に近づいてゆくような推定量 母平均の不偏推定値=標本平均 母分散の不偏推定値

点推定 最尤推定法 母数をある一つの値として推定する 観測値: x 1,x 2,…,x n 母数が θ の場合に, 観測値の組 (x 1,x 2,…,x n ) が 実現する確率 母数 θ のもっともらしさ...尤度関数

「もっともらしさ」が最大となる母数 θ を求める(尤度関数の最大化) 対数尤度関数 実際は対数尤度関数を最大化 よりもの方が標本が生起する確率が大きい の方が母数として現実的(もっともらしい) 最尤推定法