熱と仕事.

Slides:



Advertisements
Similar presentations
音・音速 遠くから聞こえてくる優しい,海 の音 海の波. 音とは?  音(おと)とは、物理学的には物体を通して縦波として伝 わる力学的エネルギーの変動のこと。 波動としての特徴 (周波数・波長・周期・振幅・速度など)を持つ。 物理学物体縦波力学的エネルギー 波動周波数波長周期振幅速度物理学物体縦波力学的エネルギー.
Advertisements

物理科3回 尾尻礼菜 ブラウン運動 ブラウン運動のシミュレーション。黒色の媒質粒子の衝 突により、黄色の微粒子が不規則に運動している。
宇宙の「気温」 1 億度から –270 度まで 平下 博之 ( 名古屋大学・理・物理 U 研 ).
1 重力 力に従って落下 → E P 減少 力に逆らって上昇 → E P 増加 落下・上昇にともなう重力ポテンシャルエネルギー 変化 P32 図2-5 力が大きいほど E P の 増減は大きくなる. ポテンシャルエネルギーと力の関係.
1 今後の予定 8 日目 11 月 17 日(金) 1 回目口頭報告課題答あわせ, 第 5 章 9 日目 12 月 1 日(金) 第 5 章の続き,第 6 章 10 日目 12 月 8 日(金) 第 6 章の続き 11 日目 12 月 15 日(金), 16 日(土) 2 回目口頭報告 12 日目 12.
YohkohからSolar-Bに向けての粒子加速
ヒートポンプによる冷暖房の原理 物理化学III
内燃機関と外燃機関.
2009年6月25日 熱流体力学 第11回 担当教員: 北川輝彦.
傾圧不安定の直感的理解(3) 地上低気圧の真上で上昇流、 高気圧の真上で下降流になる理由
冷媒回路のしくみ<ヒートポンプを分解すると>
気体の熱的挙動 KANO 気体の挙動.
今後の予定 7日目 11月 4日 口頭報告レポート押印 前回押印したレポートの回収 口頭報告の進め方についての説明 講義(4章),班で討論
冷媒回路のしくみ<ヒートポンプを分解すると>
建築環境工学・建築設備工学入門 <空気調和設備編> <ヒートポンプの原理> 熱の移動の原理<ヒートポンプの基本>
Kumamoto University ペットボトルロケットの力学 自然科学研究科機械知能システム 森 和也.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
医薬品素材学 I 1 物理量と単位 2 気体の性質 1-1 物理量と単位 1-2 SI 誘導単位の成り立ち 1-3 エネルギーの単位
自己重力多体系の 1次元シミュレーション 物理学科4年 宇宙物理学研究室  丸山典宏.
伝達事項 皆さんに数学と物理の全国統一テストを受けても らいましたが、この時の試験をまた受けていただ きます。
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
熱力学Ⅰ 第1回「熱力学とは」 機械工学科 佐藤智明.
大気の熱力学 乾燥大気 湿潤大気.
国際物理オリンピック実験試験のシラバス 1.標準的な実験器具・装置が使える(マニュアル無しで使える):
2009年4月23日 熱流体力学 第3回 担当教員: 北川輝彦.
3.エネルギー.
2009年8月27日 熱流体力学 第14回 担当教員: 北川輝彦.
α α 励起エネルギー α α p3/2 p3/2 α α 12C 13B 12Be 8He α α α
2009年5月28日 熱流体力学 第7回 担当教員: 北川輝彦.
反応性流体力学特論  -燃焼流れの力学- 燃焼の流体力学 4/22,13 燃焼の熱力学 5/13.
[Last Update 2015/04/30] 建築環境工学・建築設備工学入門 <基礎編> 熱移動の基礎.
国際物理オリンピック実験試験のシラバス 1.標準的な実験器具・装置が使える(マニュアル無しで使える):
気体の熱的挙動 KANO 気体の挙動.
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
計算力学技術者2級 (熱流体力学分野の解析技術者) 認定試験対策講習会 - 3章・1 熱力学・伝熱学の基礎 -
2009年5月21日 熱流体力学 第6回 担当教員: 北川輝彦.
HERMES実験における偏極水素気体標的の制御
建築環境工学・建築設備工学入門 <基礎編> 熱の移動の原理<ヒートポンプの基本>
流体の粘性項を 気体分子運動論の助けを借りて、 直感的に理解する方法
今後の予定 4日目 10月22日(木) 班編成の確認 講義(2章の続き,3章) 5日目 10月29日(木) 小テスト 4日目までの内容
燃焼の流体力学 4/22 燃焼の熱力学 5/13 燃焼流れの数値解析 5/22
シリカガラスの熱的性質 I 粘度,特性温度,熱膨張,比熱,熱伝導 福井大学工学部 葛生 伸.
電子物性第1 第9回 ー粒子の統計ー 電子物性第1スライド9-1 目次 2 はじめに 3 圧力 4 温度はエネルギー 5 分子の速度
測定対象・・・イオン化された1個1個の気体状の分子(荷電粒子)
課題 熱力学関数 U, H, S, A, G の名称と定義を書け dS, dGの意味を書け ⊿U, ⊿H, ⊿G の意味を書け.
課題 熱力学関数 U, H, S, A, G の名称と定義を書け dS, dGの意味を書け ⊿U, ⊿H, ⊿G の意味を書け.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
プレートテクトニクス 講義レジメ [VI] 固体地球を“生きさせている”エネルギー源
連続体とは 連続体(continuum) 密度*が連続関数として定義できる場合
FUT 原 道寛 学籍番号__ 氏名_______
今後の予定(日程変更あり!) 5日目 10月20日(木) 小テスト 1~2章の内容 講義(3章)
2009年4月23日 熱流体力学 第3回 担当教員: 北川輝彦.
2009年7月2日 熱流体力学 第12回 担当教員: 北川輝彦.
低温物体が得た熱 高温物体が失った熱 = 得熱量=失熱量 これもエネルギー保存の法則.
物質機能化学1および演習 注意事項 1. 成績は全て、小テスト、中間テスト、期末テストの点数で決定する。
九州大学 猿渡元彬 共同研究者 橋本正章 (九州大学)、江里口良治(東京大学)、固武慶 (国立 天文台)、山田章一(早稲田理工)
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
ニュートン力学(高校レベル) バージョン.2 担当教員:綴木 馴.
これらの原稿は、原子物理学の講義を受講している
今後の予定 8日目 11月13日 口頭報告答あわせ,講義(5章) 9日目 11月27日 3・4章についての小テスト,講義(5章続き)
今後の予定 7日目 11月12日 レポート押印 1回目口頭報告についての説明 講義(4章~5章),班で討論
宿題を提出し,宿題用解答用紙を 1人2枚まで必要に応じてとってください 配布物:ノート 2枚 (p.85~89), 小テスト用解答用紙 1枚
熱量 Q:熱量 [ cal ] or [J] m:質量 [g] or [kg] c:比熱 [cal/(g・K)] or [J/(kg・K)]
CO2大幅削減のためのCNF導入拡大戦略の立案 (3)バイオマスプラスチックによるCO2削減効果の検証
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
2009年5月14日 熱流体力学 第5回 担当教員: 北川輝彦.
2009年6月18日 熱流体力学 第10回 担当教員: 北川輝彦.
FUT 原 道寛 学籍番号__ 氏名_______
Presentation transcript:

熱と仕事

気体の内部エネルギー 気体分子の持つエネルギーにはどんなものがあるか?

K= mv ×(個数) K= nR⊿T 1 3 2 運動エネルギーについて 気体分子1個1個に速さがあるので、運動エネルギーは存在する。 その大きさは、 K=  mv ×(個数) 2 1 K=  nR⊿T 2 3 計算すると

位置エネルギーについて 位置エネルギーはある?ない? 基準面 上と下でキャンセルしあって、位置エネルギーは、ほぼ0である。

つまり、 気体分子のエネルギー 気体分子の運動エネルギーの総和! このエネルギーを 気体の内部エネルギー という

内部エネルギー⊿Uを増やす方法は? 気体の速さを増加させれば、内部エネルギーが増加! 方法その1 外から仕事Wを加えて、加速させてやる。 方法その2 外から熱量Qを加えてあたためてやる。

方法その1 仕事W 内部エネルギー⊿ Uは、        仕事Wを加えるとWの分だけ増加する。

方法その2 熱量Q 内部エネルギー⊿ Uは、        熱量Qを加えるとQの分だけ増加する。

まとめると、 ⊿U    =  Q  + W (内部エネルギー増加)=(外からの熱量)+(外からした仕事) これを熱力学の第一法則という!

断熱変化 熱量Q 熱の出入りをなくしたまま変化させることを断熱変化という。

断熱圧縮 仕事W 断熱材で囲った気体に外から仕事をするとどうなるだろう? ⊿U=0+W     ∴⊿U=W

断熱膨張 仕事W 断熱材で囲った気体に外へ仕事をするとどうなるだろう? ⊿U=0-W     ∴⊿U=-W 温度が下がる!