A New Solar Flare Scenario - High-beta Plasma Disruption -

Slides:



Advertisements
Similar presentations
esc/images/journal200404/index.html How the OFES (OGCM for the Earth Simulator) simulates the climatological state of the.
Advertisements

だい六か – クリスマスとお正月 ぶんぽう. て form review ► Group 1 Verbs ► Have two or more ひらがな in the verb stem AND ► The final sound of the verb stem is from the い row.
て -form - Making て -form from ます -form -. With て -form, You can say... ~てもいいですか? (= May I do…) ~てください。 (= Please do…) ~ています。 (= am/is/are doing…) Connecting.
第 5 章 2 次元モデル Chapter 5 2-dimensional model. Contents 1.2 次元モデル 2-dimensional model 2. 弱形式 Weak form 3.FEM 近似 FEM approximation 4. まとめ Summary.
VE 01 え form What is え form? え? You can do that many things with え form?
Magnetic Reconnection in the Magnetotail: Geotail Results
極紫外撮像分光装置 (EIS) 国立天文台 渡 邊 鉄 哉
米国セキュリティ調査 (2002 CSI/FBI調査 攻撃場所)
太陽フレアの磁気リコネクション流入流の発見
A:あらっ!どうしたんですか?! B: ________んです。 つぎの絵を見て、何か面白い答えを書いてください。
英語特別講座 疑問文 #1    英語特別講座 2011 疑問文.
The Bar バー.
第1回レポートの課題 6月15日出題 今回の課題は1問のみ 第2回レポートと併せて本科目の単位を認定 第2回は7月に出題予定
Chapter 11 Queues 行列.
日本語... ジェパディー! This is a template for you to use in your classroom.
と.
2010年7月9日 統計数理研究所 オープンハウス 確率モデル推定パラメータ値を用いた市場木材価格の期間構造変化の探求 Searching for Structural Change in Market-Based Log Price with Regard to the Estimated Parameters.
Chris Burgess (1号館1308研究室、内線164)
Bファクトリーにおけるビームビームリミットの研究
Contents Introduction Experiment Result & Discussion Summary
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
Noun の 間(に) + Adjective Verb てform + いる間(に) during/while.
How to quote what someone says or said
太陽コロナ質量放出の 3次元MHDシミュレーション
D. M. Rust and B. J. LaBonte 2005, ApJ, 622, L 年6月6日 太陽雑誌会(速報)
SHIGENOBU HIROSE AND JULIAN H. KROLIK
SP0 check.
Report from Tsukuba Group (From Galaxies to LSS)
Tohoku University Kyo Tsukada
にほんご JPN101 Sep. 23, 2009 (Wednesday).
にほんご JPN101 Oct. 26, 2009 (Monday).
十年生の 日本語 Year 10 Writing Portfolio
Group meeting 2016/5/13 Katsuhiro Umeda.
Chapter 4 Quiz #2 Verbs Particles を、に、で
The Sacred Deer of 奈良(なら)
Did he/she just say that? Get your head out of the gutter! Oh wait….
On / in / at Honoka Tanno.
“You Should Go To Kyoto”
VTA 02 What do you do on a weekend? しゅうまつ、何をしますか。
ストップウォッチの カード ストップウォッチの カード
2018/11/19 The Recent Results of (Pseudo-)Scalar Mesons/Glueballs at BES2 XU Guofa J/ Group IHEP,Beijing 2018/11/19 《全国第七届高能物理年会》 《全国第七届高能物理年会》
中性子星の超流動に対する ハイペロン混在の効果
Causative Verbs Extensively borrowed from Rubin, J “Gone Fishin’”, Power Japanese (1992: Kodansha:Tokyo) Created by K McMahon.
これまでの研究のまとめ: 「太陽フレアのリコネクションレートの統計解析」 今後の研究
全国粒子物理会 桂林 2019/1/14 Implications of the scalar meson structure from B SP decays within PQCD approach Yuelong Shen IHEP, CAS In collaboration with.
Optical spectroscopy of flares from the black hole X-ray transient A in quiescence T. Shahbaz, et al., 2004, MNRAS, 354, /10/13(Wed) Wednesday.
Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus
太陽多波長フレアデータ解析研究会 NSRO-CDAW10
My Dance Circle December 13, 2018  表紙 my dance circle.
G. Hanson et al. Phys. Rev. Lett. 35 (1975) 1609
2019年4月8日星期一 I. EPL 84, (2008) 2019年4月8日星期一.
フレアの非熱的成分とサイズ依存性    D1 政田洋平      速報@太陽雑誌会(10/24).
References and Discussion
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
太陽フレアにおける Plasmoid-Induced-Reconnection の MHD シミュレーション
第1回レポートの課題 6月24日出題 今回の課題は1問のみ 第2回レポートと併せて本科目の単位を認定 第2回は7月に出題予定
シミュレーションサマースクール課題 降着円盤とジェット
北大MMCセミナー 第62回 附属社会創造数学センター主催 Date: 2016年11月4日(金) 16:30~18:00
ー生命倫理の授業を通して生徒の意識に何が生じたかー
MHD Simulation of Plasmoid-Induced-Reconnection in Solar Flares
Igor Petenko et al. Geophysical Research Abstracts Vol. 15, EGU , 2013
The Facilitative Cues in Learning Complex Recursive Structures
MO装置開発 Core part of RTR-MOI Photograph of core part.
非等方格子上での クォーク作用の非摂動繰り込み
Cluster EG Face To Face meeting
Grammar Point 2: Describing the locations of objects
Preflare Features in Radios and in Hard X-Rays
Cluster EG Face To Face meeting 3rd
原始星からのX線発見と課題 (r-Ophの)T-Tauri星からX線放射とフレアーの発見
Improving Strategic Play in Shogi by Using Move Sequence Trees
Presentation transcript:

A New Solar Flare Scenario - High-beta Plasma Disruption - Kiyoto Shibasaki (Nobeyama Radio Observatory) 2002 July 12 Nobeyama one-day Symposium

ACTON: I have difficulty thinking of things that I can’t draw pictures of, and Dr. Zirin’s comment reminds me of something that has puzzled me for a long time. If one looks at the H-alpha image of a larger solar flare, one sees an enormously complicated and convoluted object in the chromosphere, extending over a very large area. We now think that this brightening results from heat conducted from above. This says that in the corona the hot volumes must be interconnected in a most complex topology. The means by which this complex topology is established might be a key to understanding the whole flare process. I have become convinced that loops are physically interacting. But if I try to draw a picture of interacting loops, I find that the interaction can only take place on a surface. How can appreciable magnetic flux be annihilated there? The result in any case is that substantial volumes are filled with hot plasma. How does it get there? It seems to me that there are things happening to affect the transport of energy transverse to the field lines, and in a very complicated topology. I wonder if there is anybody here smart enough to explain how this happens? GROUP: (Hollow laughter.) from Solar Phys. 86 (1983)

Contents Current standard solar flare model Difficulties with the current model Flare observations (movies) Proposal of a new solar flare model (high-beta plasma disruption) Application to the observed phenomena Further studies

Current Standard Solar Flare Model Computer simulation by Yokoyama

YOHKOH Observation (I) Soft X-ray Telescope(SXT)

YOHKOH Observation (II) SXT &HXT

Difficulties How to store all flare energy in a very thin current layer (we cannot observe due to its thinness) Plasma inflow observation (one candidate) How to realize the high energy state and how to keep it as quasi-equilibrium until release Number problem (thermal, non-thermal)

Observation by NoRH

Observation(TRACE/EUV) 1999 Oct. 22 (171Å, 1MK) 2001 Nov. 01 2001 Nov. 27 2001 Sep. 18 2002 Apr. 21 2002 May 27

Flare Configuration (Non-thermal) Nishio and other: 14 events (impulsive events, M-class) Hanaoka: 13 events (remote source) Both came to the same conclusion, small + large loops (parallel magnetic field configuration, or three legged structure) Reconnection is suggested, but I interprete in different way

Flare Scenarios Low-beta scenario High-beta scenario Magnetic free energy (= current) Dissipation by reconnection High-beta scenario Plasma free energy (confinement, curvature, flow) Dissipation by High-beta disruption (ballooning instability)

High-beta Disruption Scenario of Solar Flares (Shibasaki, ApJ 557, 2001) Activities in small loops: Small curvature High density Flows along loops Activities above loops Injection from small loop to large loop Parallel magnetic field configuration (small, large loops)

Centrifugal force by thermal motion and bulk flow V.S. Gravity gc = v2/R Bulk flow Thermal motion  gc/go ~ 6 T6/R9 gc/go ~ 4 V72/R9  go R9

Centrifugal Force v.s. Magnetic Tension Fc Bulk Flow Thermal motion Fc / Ft = 2βk Fc / Ft = βT Ft

Definitions βk = (1/2)ρV2 / (B2/8π) = 2.1 ×N9V72 / BG2 βT = P / (B2/8π) = 6.9 ×N9T6 / BG2 βg = ρgoR / (B2/8π) =1.1 ×N9R9 / BG2 κc = 1 / R κP = ∂ln(P)/∂n     = 1 / lP κB =∂ln(B2/8π)/∂n = 1 / lB

Equilibrium and Instability conditions Equilibrium at the outer surface βTκP +κB = 2κc(1+βg/2‐βk) Instability condition βT>2(lp/R)・      ( 1+βg/2‐βk ) Growth time τ(s) ~100 √(lp9R9/T6)

Magnetosphere Centrifugal force due to earth rotation is important. Electric field due to space charge, alternative upward and downward

High-beta Disruption in Tokamaks High density, high temperature in a weaker magnetic field is necessary for economic fusion. Non-linearly developed phase.

Prominence Eruption and Ballooning Ballooning Instability (turbulence, particle accel., ejection,,,) 17GHz Prominence Eruption Spot Flare ribbons Event on 1999 Oct. 20

Summary and Conclusions Common Features in Flares and Balloons: Turbulence, plasma ejection, high-energy particle acceleration (upward and downward), loop top plasma blobs, over-the-loop activity, impulsive nature, quasi-periodicity in particle acceleration

Further Studies Beta loading mechanism Energetics High cadence imaging spectroscopy of loops at various temperature Numerical simulations of non-linearly developed ballooning instability under solar coronal condition (3-D)

LDEフレアにおけるエネルギーとプラズマの供給 柴崎清登 (NRO)

LDEフレアにおけるエネルギーとプラズマ供給 継続時間、温度、RAY構造、Inflow(YOHKOH, SoHO/LASCO) 磁気再結合シナリオ Inflow によるエネルギーとプラズマの供給 継続時間と温度 高ベータ崩壊シナリオとの関係

LDEフレア プロミネンス崩壊 / CME, Two ribbon flare 継続時間:数時間~1日 温度:8百万度、一定 RAY構造:YOHKOH/SXT Inflow RAY構造に沿った下降流 (YOHKOH/SXT) 上空コロナでの下降流 (SoHO/LASCO)

Inflowによるエネルギーとプラズマの供給 位置エネルギー ⇒運動エネルギー ⇒熱エネルギー     mpgoRo h             h T= ―――  ―― T6=7.7 × ―― 3kB h+1 h+1 プロミネンスの質量 : 位置エネルギー 2×1015g ~ 4×1030erg

高ベータ崩壊シナリオとの関係 プロミネンス上昇 上空のアーケード磁場に衝突 バルーニング(櫛状のfingers) Fingersの上昇 : RAY構造 上昇しきれなかったプラズマの下降 LASCO: inflow & SXT: inflow 位置エネルギーの解放とプラズマの供給   長時間(LDE),一定温度(8MK)のプラズマ供給