第5回(5/10) 授業の学習目標 1.1.5節 検定の前提とその適否について考えよう(テキスト輪読 p.10から p.11)

Slides:



Advertisements
Similar presentations
東京大学医学系研究科 特任助教 倉橋一成 1.  背理法を使った理論展開 1. 帰無仮説( H0 、差がない)が真であると仮定 2. H0 の下で「今回得られたデータ」以上の値が観測でき る確率( P 値)を計算 3. P 値が 5% 未満:「 H0 の下で今回のデータが得られる可 能性が低い」
Advertisements

母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
2006 年度 統計学講義内容 担当者 河田正樹
1 / 44 SPSS ハウツー 独立行政法人 大学入試センター 橋本 貴充 2007 年 3 月 30 日 ( 金 )
統計学入門2 関係を探る方法 講義のまとめ. 今日の話 変数間の関係を探る クロス集計表の検定:独立性の検定 散布図、相関係数 講義のまとめ と キーワード 「統計学入門」後の関連講義・実習 社会調査士.
コンピュータプラクティ スⅠ アンケート 水野嘉明 1. 本日の予定 「アンケート」  人間的な要因を評価するための 一手段として、アンケートの方 法について学ぶ  実験では、アンケートの集計を 行う 2.
エクセルと SPSS による データ分析の方法 社会調査法・実習 資料. 仮説の分析に使う代表的なモデ ル 1 クロス表 2 t検定(平均値の差の検定) 3 相関係数.
グラフィカル多変量解析 ----目で見る共分散構造分析----
数理統計学  第9回 西山.
第4日目第1時限の学習目標 3つ以上の平均値の差の検定(分散分析)の概要を知る。 (1)分散分析の例を知る。
Rコマンダーで2要因の 反復測定ANOVA 「理学療法」Vol28(8)のデータ
第6回授業(5/17)での学習目標 1.2.1 実験計画法のひろがり(途中から) 1.2.2 節完全無作為化デザインをもっと知 ろう
教育心理学に対するWeb統計の可能性 (その光と影)
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
第2回授業 (10/2)の学習目標 第5章平均値の差の検定の復習を行う。 (詳細を復習したい者は、千野のWEB頁の春学期パワ
分散分析マスターへの道.
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
RコマンダーでANOVA 「理学療法」Vol28(7)のデータ
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
大学院に向けての学習の進め方 〔注意〕 *この資料は、「このとおり学習すれば合格する」と保証するものではありません。 *筆記試験以外に「面接試験」があります。「筆記試験の成績さえ良ければ合格する」ということではありません。 *「ここに掲載しているテキストから試験問題が出題される」という意味ではありません。
統計学 12/3(月).
第4回 (10/16) 授業の学習目標 先輩の卒論の調査に協力する。 2つの定量的変数間の関係を調べる最も簡単な方法は?
寺尾 敦 青山学院大学社会情報学部 社会統計 第9回:1要因被験者内デザイン 寺尾 敦 青山学院大学社会情報学部
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
心理統計学 II 第7回 (11/13) 授業の学習目標 相関係数のまとめと具体的な計算例の復習 相関係数の実習.
第6章 2つの平均値を比較する 2つの平均値を比較する方法の説明    独立な2群の平均値差の検定   対応のある2群の平均値差の検定.
本時の目標 標本調査の意味を知り、全数調査と標本調査の違いを理解する。
初歩的情報リテラシーと アンケート集計のためのExcel・SPSS講座
疫学(Epidemiology) 第4回 標本抽出法 誤差やバイアスの制御 中澤 港(内線1453)
第4回講義(4/26)の学習目標 1.1.3節 2種類の過誤等の理解を深めよう 1.1.4節 効果量とは 1.1.5節 検定の前提とその適否
統計学勉強会 対応のあるt検定 理論生態学研究室 3年 新藤 茜.
第8回授業(5/31)での学習目標 一事例デザインとは? 分割区画型反復測定デザインとは? メタ・アナリシスとは?。
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
統計解析 第10回 12章 標本抽出、13章 標本分布.
調査対象の決定 (今日の目標) 1. 全数調査と標本調査の違いを理解する。 2. 標本調査の種類と特徴を理解する。 3.
対応のあるデータの時のt検定 重さの測定値(g) 例:
12月4日 伊藤 早紀 重回帰分析.
数理統計学 第11回 西 山.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
Study Design and Statistical Analysis
ワークショップ ユーザーとメーカーの公開相談会
マーケティング 第2部 マーケティング・リサーチ
環境計画数理 佐野可寸志 オフィスアワー 木曜昼休み.
? ? ? ? ? ? ? ? 多変量解析とは? 問題となっている現象 ●問題の発生原因がわからない(因果関係)
寺尾 敦 青山学院大学社会情報学部 社会統計 第9回:実験計画法 寺尾 敦 青山学院大学社会情報学部
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
第4日目第1時限の学習目標 3つ以上の平均値の差の検定(分散分析)の概要を知る。 (1)分散分析の例を知る。
相関分析.
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
Rコマンダーで分割プロットANOVA 「理学療法」Vol28(8)のデータ
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
疫学概論 交絡 Lesson 17. バイアスと交絡 §A. 交絡 S.Harano, MD,PhD,MPH.
Rコマンダーで2元配置ANOVA 「理学療法」Vol28(8)のデータ
第11回授業(12/11)の学習目標 第8章 分散分析 (ANOVA) の学習 分散分析の例からその目的を理解する 分散分析の各種のデザイン
データ解析 静岡大学工学部 安藤和敏
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
1.母平均の検定:小標本場合 2.母集団平均の差の検定
第12回授業(12/18)の目標 ANOVA検定の実習 WEB を用いたANOVA検定と、授業で行った検定結果の正誤の確認方法(宿題)
統計的検定   1.検定の考え方 2.母集団平均の検定.
データの型 量的データ 質的データ 数字で表現されるデータ 身長、年収、得点 カテゴリで表現されるデータ 性別、職種、学歴
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
標準時間の設定と生産性改善 日本能率協会セミナー 目標 6時間 期間 3ヶ月 講師 MEマネジメントサービス編
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
数理統計学 西 山.
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
確率と統計 年12月16日(木) Version 3.
Presentation transcript:

第5回(5/10) 授業の学習目標 1.1.5節 検定の前提とその適否について考えよう(テキスト輪読 p.10から p.11) 第5回(5/10) 授業の学習目標 1.1.5節 検定の前提とその適否について考えよう(テキスト輪読 p.10から p.11) 1.1.6節 実験計画における無作為割り付けの必要性 (テキスト輪読 p.11から p.12) 1.1.7節 調査的研究の特徴としての標本抽出(テキスト輪読 p.12から p.13) 1.2節 実験的研究における要因の効果検討のための方法論 1.2.1節 実験計画法の広がり(途中まで)

1.1.5節 検定の前提とその適否 1.1.2節では、検定の是非について議論した。ここでは、一応検定を是とする立場から、検定の前提とその適否について考えてみよう。

テキスト1.1.6 節、1.1.7 節を読もう 1.1.6節 実験計画における無作為割り付けの考え方 1.1.6節 実験計画における無作為割り付けの考え方 1.1.7節 調査研究における標本抽出の考え方

1.1.6 節 実験計画における 無作為割り付けの考え方 1.1.6 節 実験計画における         無作為割り付けの考え方 1.1.5節で取り上げた  2群の平均の差の検  定における無作為割り  付けの考え方は、つぎ  の1.2節で紹介する実  験計画法でも基本的  な役割を果たすことを  学ぶ。 とりわけ、1.1.6節を読  み、実験計画法での  Fisher の3原則を学ぼう。

実験計画法における Fisher の3原則とは (1)反復 同一水準には2回以上の標本が必要 (2)無作為化 標本の各水準への割付は、無作為化 が必要 (3)局所管理

局所管理とは? 標本全体の均一化が難しい時、それにかかわる副次的な因子に対して複数の水準を設定し、その水準内では局所的に標本の均一化を図ること。 局所管理は、実験条件の管理ではなく、被験者側要因の管理にかかわる点に、注意が必要。

完全無作為化デザインの例 12h 24h 36h 48h 1 3 4 7 2 6 5 8 3 4 9 10 11 睡眠遮断実験データ    (Kirk, 1985) 要因ー睡眠遮断 要因数ー1 要因の水準ー4   12h, 24h, 36h, 48h の睡眠遮断条件 サンプル数ー各水準に    8名づつ無作為に割付 従属変数ー手先の鈍感さ 完全無作為化デザイン   ANOVA 局所管理は、この場合無し 12h 24h 36h 48h 1 3 4 7 2 6 5 8 3 4 9 10 11

1.1.7 節 調査研究における 標本抽出の考え方 無作為抽出不能な 現象やデータに対 する多変量解析や、 1.1.7 節 調査研究における           標本抽出の考え方 無作為抽出不能な  現象やデータに対  する多変量解析や、  有限母集団の場合の標本調査法について、1.1.7節を読んで理解しよう。

多変量解析法と標本調査法 多変量解析法 -重回帰分析、正 準相関分析、因子 分析、判別分析、 ロジスティック回帰等 標本調査法    -重回帰分析、正    準相関分析、因子    分析、判別分析、    ロジスティック回帰等 標本調査法    -有限母集団から    の標本抽出

1.2節 実験的研究における 要因(条件)の効果検討のための方法論 1.2節 実験的研究における   要因(条件)の効果検討のための方法論 1.2 節の導入部(p.12)  を読み、実験的研究に  おける要因(条件)の効  果検討のための方法論  の基礎を理解しよう。