Effect sizeの計算方法 標準偏差が正確に求められるほど症例数が十分ないときは、測定しえた症例の中で、最大値と最小値の値の差を4で割り算した値を代用することが出来る。この場合には正規分布に従うことを仮定することになる。

Slides:



Advertisements
Similar presentations
計測工学 - 測定の誤差と精度 2- 計測工学 2009 年 4 月 28 日 Ⅱ限目. 授業内容 2.1 数値計算における誤差 2.2 計算過程での誤差 2.3 測定の精度.
Advertisements

東京大学医学系研究科 特任助教 倉橋一成 1.  背理法を使った理論展開 1. 帰無仮説( H0 、差がない)が真であると仮定 2. H0 の下で「今回得られたデータ」以上の値が観測でき る確率( P 値)を計算 3. P 値が 5% 未満:「 H0 の下で今回のデータが得られる可 能性が低い」
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
第6回授業( 5/15) の目標 先回の第1章の WEB 宿題実行上の注意。 第3章の区間推定の基本的考え方を学ぶ(こ の途中までで、終了)。 第3章の母平均の区間推定に必要な数表の見 方を知る(岩原テキスト、 p.434, t- 分布表)。 テキスト p.13 の信頼区間はどのようにして得 られる?-信頼区間導出の概要について学ぶ。
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
統計解析第 11 回 第 15 章 有意性検定. 今日学ぶこと 仮説の設定 – 帰無仮説、対立仮説 検定 – 棄却域、有意水準 – 片側検定、両側検定 過誤 – 第 1 種の過誤、第 2 種の過誤、検出力.
1 章 データの整理 1.1 データの代表値. ■ 母集団と標本 観測個数 n ( または 標本の大きさ、標本サイズ、 Sample Size) n が母集団サイズに等しい時 … 全標本 または 全数調査 (census) 母集団 (population) 知りたい全体 標本 (sample) 入手した情報.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4回 関連2群と一標本t検定 問題例1 6人の高血圧の患者に降圧剤(A薬)を投与し、前後の収縮期血圧 を測定した結果である。
統計的仮説検定の手順と用語の説明 代表的な統計的仮説検定ー標準正規分布を用いた検定、t分布を用いた検定、無相関検定、カイ二乗検定の説明
      仮説と検定.
経済統計学 第2回 4/24 Business Statistics
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
統計学第9回 「2群の差に関するノンパラメトリックな検定」 中澤 港
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
ホーエル『初等統計学』 第8章1節~3節 仮説の検定(1)
第7回 独立多群の差の検定 問題例1 出産までの週数によって新生児を3群に分け、新生児期黄疸の
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
相関係数 植物生態学研究室木村 一也.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
第6章 2つの平均値を比較する 2つの平均値を比較する方法の説明    独立な2群の平均値差の検定   対応のある2群の平均値差の検定.
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
3群以上の場合,t-検定か多重比較検定か? 片側か両側検定かどちらを選ぶ? ◎報告書に記載してください
臨床統計入門(3) 箕面市立病院小児科  山本威久 平成23年12月13日.
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学 11/08(木) 鈴木智也.
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
データのバラツキの測度 レンジと四分位偏差 分散と標準偏差 変動係数.
河川工学 -水文統計- 昼間コース 選択一群 2単位 朝位
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
リサーチカンファ 29 Aug, 2017.
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
代表値とは 散布度とは 分布のパラメータ 母集団とサンプル
確率論の基礎 「ロジスティクス工学」 第3章 鞭効果 第4章 確率的在庫モデル 補助資料
中澤 港 統計学第4回 中澤 港
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
確率と統計 年1月12日(木)講義資料B Version 4.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
1.母平均の検定:小標本場合 2.母集団平均の差の検定
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
第4章 統計的検定 (その2) 統計学 2006年度.
経営学研究科 M1年 学籍番号 speedster
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
最尤推定・最尤法 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
N-tert-ブチル-ベンゾチアゾールスルフェンアミド(Cas No
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
臨床統計入門(1) 箕面市立病院小児科  山本威久 平成23年10月11日.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
確率と統計 年12月16日(木) Version 3.
確率と統計 年1月7日(木) Version 3.
外れ値検出 Outlier Detection 外れサンプル検出 Outlier Sample Detection
Presentation transcript:

2.5

0.2

0.5

0.2 2.5

Effect sizeの計算方法 標準偏差が正確に求められるほど症例数が十分ないときは、測定しえた症例の中で、最大値と最小値の値の差を4で割り算した値を代用することが出来る。この場合には正規分布に従うことを仮定することになる。

十分なサンプルサイズを採用する いずれの場合にも母集団の率や平均値,生存率などについては予測しかできないので,ある程度の幅を持って,サンプルサイズを計算し,十分なサンプルサイズを採用するように考える。

一番大きな値を採用する  また,2群の比較ではなく,3群以上の比較を行なう場合には,それぞれのペアについてサンプルサイズを計算して,その中で一番大きな値を採用するようにする。

2群の場合でもそれぞれの比にあわせてサンプルサイズを計算する  また,2群の場合でも,割り付けあるいは2群の対象者数が1:1にならない場合もあるが,そのような場合でもそれぞれの比にあわせてサンプルサイズを計算する。

必要症例数(サンプルサイズ)の算出 条件: 測定値で連続変数(数値変数)、 正規分布に従う(SDは2群で等しい) 必要な数値:  条件: 測定値で連続変数(数値変数)、       正規分布に従う(SDは2群で等しい)  必要な数値:        予測される平均値 (μ1, μ2)       SD standard deviation (σ)       αエラー値の標準正規偏差(zα)       βエラー値の標準正規偏差(zβ)

それぞれの研究においてアウトカムの測定スケールが異なる 平均値や標準偏差の絶対値は異なる>平均値の差を標準偏差σで割り算した値は、1標準偏差あたりの平均値の差を表す 標準化された平均値の差を表すことになる。すなわち、測定のスケールが異なっても互いに比較することが可能な値になる。これを(standardized) effect size(標準化)有効サイズ(エフェクトサイズ)Δと呼ぶ。  サンプルサイズの計算にはこのエフェクトサイズを用いる。

Effect size Δ = |μ1 - μ2|/σ もし、2群の平均値が1標準偏差分、離れているとすると、Δは1となる。もし、Δが0.1だとすると、標準偏差の10分の1しか平均値は離れていないので、かなり接近していることになる。0.2くらいであれば、エフェクトサイズは小さく、0.8くらいであれば、大きいと感じられる。

対照群の平均値μ1と治療群の平均値μ2はパイロット研究や先行研究から得られたものを予測値として用いる。 また、標準偏差が正確に求められるほど症例数が十分ないときは、測定しえた症例の中で、最大値と最小値の値の差を4で割り算した値を代用することが出来る。この場合には正規分布に従うことを仮定することになる。 さて、独立した2群での平均値の差の有意差検定にはTwo-sample t-testが用いられるが、その場合のサンプルサイズの計算は次式で行う。mは2群が同数として、それぞれの群の必要症例数である。従って、総数としては2mが必要になる。  m = 2(Zα + Zβ)2/Δ2 + Zα2/4