Resolution of Birth and Evolution of Galaxies

Slides:



Advertisements
Similar presentations
Sy2 & ULIRG review 粟木(愛媛大学) ASCA June12, Sy2 ASCA によるテーマ AGN の統一モデル 統一モデルの検証 AGN の構造 AGN-Starburst connection SB と AGN の共存 AGN ⇔ SB の進化
Advertisements

硬 X 線で探るブラックホールと銀河の進化 深沢泰司(広大理) 最近の観測により、ブラックホールの形成と 銀河の進化(星生成)が密接に関係することが わかってきた。 ブラックホール観測の最も効率の良い硬 X 線で 銀河の進化を探ることを考える。 宇宙を構成する基本要素である銀河が、いつ どのように形成され、進化してきたか、は、宇宙の.
COBE/DIRBE による近赤外線 宇宙背景放射の再測定 東京大学, JAXA/ISAS D1 佐野 圭 コービー ダービー.
南極テラヘルツ干渉計 松尾 宏 Hiroshi Matsuo Advanced Technology Center, National Astronomical Observatory.
- X 線選択で見つかる obscured AGN の母銀河 - @筑波大学 2010/02/19 秋山 正幸(東北大学天文学専攻)
銀河物理学特論 I: 講義1:近傍宇宙の銀河の 統計的性質 遠方宇宙の銀河の理解のベースライン。 SDSS のデータベースによって近傍宇宙の 可視波長域での統計的性質の理解は飛躍的 に高精度になった。 2009/04/13.
Next Generation Space Infrared Telescope SPICA Niigata Univ. “ Formation of the First Generation of Galaxies: Strategy for the Observational.
極紫外撮像分光装置 (EIS) 国立天文台 渡 邊 鉄 哉
「あすか」による 超大光度赤外線銀河(ULIRG)のX線観測 II
スケジュール 火曜日4限( 14:45-16:15 ),A棟1333号室
miniTAO近赤外線観測で見る 銀河の星形成活動
岡山 ISLE による NGC 1068 の近赤外線分光観測
第9回 星間物質その2(星間塵) 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
星形成銀河の星間物質の電離状態 (Nakajima & Ouchi 2014, MNRAS accepted, arXiv: )
SPICA Mission Requirement Document (MRD) ver. 3.5 draft
論文紹介06: 最近のγ線観測とGLASTとの関連
AOによる 重力レンズクェーサー吸収線系の観測 濱野 哲史(東京大学) 共同研究者 小林尚人(東大)、近藤荘平(京産大)、他
熱的赤外線で高感度のGLAOを用いた合体銀河中のmultiple AGNの探査
Report from Tsukuba Group (From Galaxies to LSS)
Mahalo-Subaru から Gracias-ALMA へ
電離領域の遠赤外輻射 (物理的取り扱い)      Hiroyuki Hirashita    (Nagoya University, Japan)
Damped Lya Clouds ダスト・水素分子
WISHによる超遠方クエーサー探査 WISH Science Meeting (19 July 三鷹
スケジュール 水曜3限( 13:00-14:30 ),A棟1333号室 10月 11月 12月 1月 2月 10/08 11/5 や②
WISHによるhigh-z QSOs 探査案 WISH Science Meeting (10 Mar. 三鷹
2018/11/19 The Recent Results of (Pseudo-)Scalar Mesons/Glueballs at BES2 XU Guofa J/ Group IHEP,Beijing 2018/11/19 《全国第七届高能物理年会》 《全国第七届高能物理年会》
Primordial Origin of Magnetic Fields in the Galaxy & Galaxies - Tight Link between GC and Cosmic B –  Y. Sofue1, M. Machida2, T. Kudoh3 (1. Kagoshima.
Cosmological Simulation of Ellipticals
神戸大大学院集中講義 銀河天文学:講義6 特別編 観測装置の将来計画
WISHでの高赤方偏移z >6 QSO 探査
抄訳 PFSによる銀河進化 嶋作一大 (東大) 2011/1/ すばるユーザーズミーティング.
平成28年度(前期) 総合研究大学院大学 宇宙科学専攻
近赤外線サーベイによるマゼラニックブリッジの 前主系列星探査
平成26年度(後期) 総合研究大学院大学 宇宙科学専攻
Photometric properties of Lyα emitters at z = 4
21世紀 COE 出張報告会  宇宙物理学教室 D1 成本 拓朗.
Virgo CO Survey of Molecular Nuclei Yoshiaki Sofue Dept. Phys
ガンマ線バーストで z~20の宇宙を探る ガンマ線バースト:宇宙で最も明るい光源 早期型星の終末に関連 次のステップ
全国粒子物理会 桂林 2019/1/14 Implications of the scalar meson structure from B SP decays within PQCD approach Yuelong Shen IHEP, CAS In collaboration with.
銀河物理学特論 I: 講義3-4:銀河の化学進化 Erb et al. 2006, ApJ, 644, 813
第6章 参考資料 銀河とその活動現象 Galaxies and their activities
SFN 282 No 担当 内山.
第13回 銀河の形成と進化 東京大学教養学部前期課程 2016年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
すばる望遠鏡 次期観測装置の検討会 (銀河・銀河形成分野) 観測提案のまとめ
COSMOSプロジェクト: z ~ 1.2 における星生成の環境依存性 急激な変化が起こっていると考えられる z ~1 に着目し、
村岡和幸 (大阪府立大学) & ASTE 近傍銀河 プロジェクトチーム
Major Objective [3] 惑星系形成過程の総合理解 -Thorough Understanding of Planetary System Formation- SPICA.
論文紹介 Type IIn supernovae at redshift Z ≒ 2 from archival data (Cooke et al. 2009) 九州大学  坂根 悠介.
瀬戸直樹 (京大理) 第7回スペース重力波アンテナDECIGOワークショップ 国立天文台
松原英雄、中川貴雄(ISAS/JAXA)、山田 亨、今西昌俊、児玉忠恭、中西康一郎(国立天文台) 他SPICAサイエンスワーキンググループ
第13回 銀河の形成と進化 東京大学教養学部前期課程 2014年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
References and Discussion
星間物理学 講義4資料: 星間ダストによる散乱・吸収と放射 2 銀河スケールのダスト、ダストの温度、PAH ほか
M33高密度分子ガス観測にむけて Dense Cloud Formation & Global Star Formation in M33
塵に埋もれたAGN/銀河との相互作用 今西昌俊(国立天文台) Subaru AKARI Spitzer SPICA.
銀河物理学特論 I: 講義3-5:銀河の力学構造の進化 Vogt et al
セイファート銀河中心核におけるAGNとスターバーストの結び付き
大井渚(総合研究大学院大学) 今西昌俊(国立天文台)
超高光度赤外線銀河(ULIRGs)中に埋もれたAGNの探査
宇宙の初期構造の起源と 銀河間物質の再イオン化
第12回 銀河とその活動現象 東京大学教養学部前期課程 2017年度Aセメスター 宇宙科学II 松原英雄(JAXA宇宙研)
銀河系内・星形成・系外惑星 系内天体の観点から
ALMAへの期待 -埋れたAGNの探査から-
COSMOS天域における赤方偏移0.24のHα輝線銀河の性質
2009/4/8 WISH 三鷹 小山佑世(東京大学) クアラルンプールの夜景.
COSMOS天域における 高赤方偏移低光度クェーサー探査
形成期の楕円銀河 (サブミリ銀河) Arp220.
(Pop I+II連星起源と) 初代星連星起源 ロングガンマ線バースト
Z=0.24 の Hα輝線天体でみるSFR(UV), SFR(Hα), SFR(MIR) 相互の関係
原始星からのX線発見と課題 (r-Ophの)T-Tauri星からX線放射とフレアーの発見
Presentation transcript:

Resolution of Birth and Evolution of Galaxies The next-generation Infrared astronomy mission Review of MRD Resolution of Birth and Evolution of Galaxies 1-2 June 2009 SPICA Science Workshop 2009 @ Univ. Tokyo Hideo Matsuhara (ISAS/JAXA) On behalf of SPICA Extragalactic Science team Oct.10, 2007 EAMA7

Contributors Science Working Group Preproject Team Task Force T. Yamada, M. Akiyama (Tohoku. U,), T. Nagao (Ehimie U.), T. Kodama, Y. Koyama (NAOJ), T. Goto (UH/NAOJ), Y. Ohyama (ASIAA), E. Egami (U. Arizona), T. T. Takeuchi (Nagoya Univ.) Preproject Team T. Wada, S. Oyabu, T. Takagi, M. Shirahata, S. Matsuura, T. Matsumoto, T. Nakagawa, H. Matsuhara (JAXA) Task Force T. Ichikawa (Tohoku U.), M. Imanishi (NAOJ), K. Kawara, K. Kohno (IoA, U. Tokyo), T. Saito (Ehime U.) European Consorsium K. Isaak (U. Cardif, UK) et al.

Contents Research Goals & Targets Description of Scientific Targets Open questions in 2017-20, after Herschel, ALMA & JWST? Introduction to other speakers in this session Description of Scientific Targets Review of each objective/target in MRD Role of SPICA Role of SPICA for study of distant universe problems to be solved in short term

Resolution of Birth and Evolution of Galaxies Birth of 1st Stars  Cosmic Re-ionization SPICA (図の説明)約130億年と言われる宇宙の歴史の中で、最初に生まれた星-現在の銀河を形作る星とは全く異なる星が存在した可能性が、宇宙背景放射やガンマ線バーストなどの観測的研究から示唆されている。この第一世代の星の最有力な証拠である水素分子スペクトル線は、SPICAでしか観測できない赤外線波長に存在する。SPICAは他に並ぶものの全くない超高感度なスペクトル線による撮像観測を行い、宇宙のいつ、どこにこのような第一世代の星たちが存在したのか、という謎の解明に挑む。 Formation/Evolution of Cluster of Galaxies Formation/Evolution of Stars & Super-Massive Blackholes in Galaxies Credit: NASA

Herschel launched !!! 14 May 2009 Deep FIR imaging : 3.5m aperture : confusion limit substantially improved but very limited cosmic volume FIR & Submm spectroscopy – still limited to z<<1 Credit: ESA

Resolving capability of the Cosmic Infrared Background (CIB) With an ideal point-source sensitivity limited by source confusion as a function of telescope diameter (Dole et al. 2004) Herschel requires (a few) hour to reach the confusion limit at 70-100mm

ALMA will be available soon commission from 2012 Overwhelming spatial resolution in the submm Star-forming galaxies with SFR~100 Mo/yr @ z>3 will be studied, though survey area may be limited to a few 100 arcmin2 (since FOV~20”) coordination with LMT CCAT may give information on for unbiased sample of z>3 submm galaxies

Then, JWST will come!! To be launched in 2014 Extreme sensitivity @0.6-5mm Re-ionization sources @ z>7 may be identified and studied Suprime spatial resolution (68mas@2mm) Origin of galaxies’ morphology may be answered etc. etc.

But even in 2017, mid-far IR wavelengths (20-400mm) has not yet been explored very much. THIS Wavelength range is ESSENTIALLY IMPORTANT, however, because ..

Cosmic Infrared Background : the energy production history of the universe, a half of which is hidden by dust Mostly resolved to galaxies, except for Pop III contributions NOT directly resolved to galaxies (though discussed by the stackng analysis) 宇宙赤外線背景放射とは、宇宙のはてから我々までの間に存在するすべての赤外線放射源(銀河など)からの赤外線の総和(積分光) 光源が一様な空間密度で分布していれば、遠方天体だろうと近傍天体だろうと、背景放射への寄与はほぼ同程度なので、その解明は宇宙のエネルギー創生の歴史を 解明することにつながる。 10

SPICA will explore .. #1: Nature of re-ionization sources High-z atomic H line emitters : 斉藤(松原) High-z molecular H2 line: 松原 Challenge detecting z>4 dust-obscured IR luminous population : 江上 #2: Origin of CIRB Resolving CIRB and its fluctuations: 白旗 #3: Diagnostics of distant(up to z~3) IR galaxies Atomic line spectroscopic diagnostics:松原(長尾) #4: SMBH growth history Search & Understanding obscured AGN out to z~6 : 秋山 #5: Cosmic SF & mass assembly history Distant clusters & enviromental effect on galaxy evolution :  小山

Description of Scientific Targets in “Extragalactic Science Section of MRD Major Objective [1] 銀河の誕生と進化過程の解明 Resolution of Birth and Evolution of Galaxies SPICA

Extragalactic Science :Objective #1 Nature of re-ionization sources 科学目的 Objective 銀河の誕生の解明のために重要な天体である宇宙再電離期の「種族III天体」(第一世代の星)の検出に挑む。 We will discover “population III” objects (first generation of stars) at re-ionization epoch, which play an important role in the understanding of galaxy formation processes. 科学目標 Target 「種族III天体」の候補である遠方(赤方偏移7以上)、(低金属量10-4以下)の星からの電離輝線を、放射エネルギーが赤方偏移した赤外線領域の分光観測で検出する。これにより種族III天体の存在を明らかにする。さらに「種族III天体」の形成時の分子雲冷却にかかわる水素分子輝線(赤方偏移3以上)を赤外線分光観測で探査し「種族III天体」形成の証拠を探る。 We will search for redshifted ionization lines (z>7) from low-metal objects (less than 10-4) with mid-IR spectroscopy, by which we intend to prove the existence of population III objects. We also investigate the formation of population III objects at z>3 through emission lines from hydrogen molecules -- important cooling lines of primeval molecular clouds -- using far-infrared spectrograph. 遠赤外線分光装置 BLISS 中間赤外線撮像・低分散分光装置 MIRACLE

Ha at z>7 will be detectable with MIRACLE/SPICA Ha (l0=656.3nm) enters mid-IR at 5.25mm (z=7), 8.53mm (z=12) Emitter Search for z>7? Star-formation Rate? Dust Extinction (with Hb)? 25” = 150 kpc ・・・・・・・ Dispersion direction MIRACLE’s FoV 6’x6’ Lyman a blob @z=3.1 SSA22 “Blob1” (Steidel et al. 2000, Matsuda et al. 2004) Multi-slit + wide-field MIR imager

第一世代星の誕生を水素分子(H2)輝線でとらえる Probing the 1st stars with H2 Emission Lines 星間ガスの冷却関数 Cooling Function (T<104K) 元素合成が進んでいない宇宙初期の原始ガス(<0.1Zsun) は ・H Lya (T>104K) ・H2 rotation lines 回転線(T<104K)  で冷却する これらのラインの観測が原始ガスの物理状態の理解に最も重要 Most important lines to understand physics of metal-poor gas in the early universe

H2 emission from Pop III: detection with SPICA is very challenging z~8での形成途上銀河からの(Omukai & Kitayama 2003) 0-0 S(1) 17mm フラックスは: ~10-22W/m2 @M~1011Msun 原始銀河 z~3でなら ~10-21W/m2 BLISS で100時間積分してやっと届く・・ Z=3-4にも、非常に低金属度のライマンa輝線銀河やライマンブレーク銀河が存在する (Jimenez & Heiman 2006, nature, 4580)から、検出できる可能性がある ただしターゲットをしぼりこんでおく必要

Extragalactic Science :Objective #2 Origin of Cosmic IR Background Extragalactic Science :Objective #2 科学目的 Objective 宇宙遠赤外線背景放射の大部分を個別天体に分解するとともに、遠赤外線背景放射の空間揺らぎの起源を明らかにする。 We will resolve the cosmic far-infrared background light into individual objects, and reveal the origin of the cosmic far-infrared background fluctuations. 科学目標 Target 宇宙遠赤外線背景放射を、「あかり」の3倍以上の空間分解能により個別の遠赤外線天体に分解する。さらに個別天体を取り除いた遠赤外線背景放射ゆらぎを評価し、多波長相関解析等からその起源を解明する。 We will resolve the cosmic far-infrared background light into individual far-infrared objects with 3 times or more higher spatial resolution than that of AKARI. We then evaluate far-infrared background fluctuations after removal of the individual objects, and reveal its origin through detailed analysis such as multi-wavelength correlation. 中間赤外線撮像・低分散分光装置 MIRACLE 遠赤外線撮像分光装置 SAFARI  遠赤外線分光装置 BLISS

さらに詳しくは白旗さんが話します The far-infrared background measurement with SPICA The near-infrared background (IRTS, COBE & AKARI) Proto-galaxies (e.g. pop-III stars, mini-quasars) at z~10? If substantial fraction of the energy of the NIR background is converted to dust emissions (IGM dusts, mini-quasars(AGN), etc.), it may form the far-infrared background. The far-infrared background measurement with SPICA AKARI found : 1) Excess brightness around 100um Corresponding to >10^10 gals/sr for S<100 uJy Proto-galaxies? 2) Large-scale fluctuations at 10’-30’ ~5% of the mean CIRB level Very red foreground galaxies? (Matsuura et al. 2009) さらに詳しくは白旗さんが話します

Extragalactic Science :Objective #3 Diagnostics of distant IR galaxies Extragalactic Science :Objective #3 科学目的 Objective 星間塵の影響を正しく評価し補正したうえで、星間環境の診断とダスト放射の理解を基に、塵に覆われた遠方銀河の物理化学を解明する。 We will reveal physical & chemical condition of high-z galaxies with precise correction for dust attenuation, based on understanding of interstellar environment and dust emission. 科学目標 Target 赤方偏移3までの銀河について、中間・遠赤外線中分散広帯域分光観測を行ない、PAH放射や原子の電離輝線・分子輝線を効率的に捕らえ、その銀河の星間環境と星間ダストの性質を明らかにする。これにより、他波長のように星間塵の吸収補正の不定性なく、初期の宇宙(90億年前まで)の銀河の物理化学状態を明らかにする。 We will reveal interstellar environment and dust emission characteristics of high-redshift galaxies out to z~3 through PAH emission as well as atomic and molecular emission lines with broad-band mid- & far-IR moderate resolution spectroscopy. These observations allow us to reveal the physical & chemical conditions of dusty galaxies in the early universe (up to 9 Gyr ago) with precise correction for dust attenuation. 中間赤外線中分散分光装置 MIRMES 中間赤外線撮像装置 MIRACLE 遠赤外線撮像分光装置 SAFARI  遠赤外線分光装置 BLISS

Interstellar dust in distant galaxies UIR band spectra at z=0.2, 1, 2, 5 NGC6240 Moderate resolution Spectroscopy with SPICA (1hr, 5sigma) MIRACLE R~50 MIRMES R~700 SAFARI Ds=1cm-1, Spectroscopic Diagnostics of Interstellar gas & dust out to z~3! SAFARI MIRMES BLISS MIRACLE UIR band features at 3.3, 6.2, 7.6-7.8, 8.6, 11.2, 12.7mm atomic ionic lines; [ArIII] at 8.99mm (27.63eV, nCe=4.8・105) [SIV] at 10.51mm (34.83eV, nCe=5.6・104) [NeII] at 12.81mm (21.56eV, nCe=5.4・105)

Numerous Atomic/Ionic Fine-structure Lines exist in the Mid- to Far-infrared 158mm 88mm Diagnostic tool to study the Physical/Chemical Condition without sufering from dust extinction

l/Dl =1000 is necessary for the line diagnostics Line/Continuum ratio : ~3 for [OI] 63; ~2 for [CII] 158 & [OIII] 88 ; but ~0.3 for [N II] 122 & [OI] 145 (Negishi et al. 2001, ISO/LWS) [NIII]57 [OI]63 [OIII]52 [CII]158 [OIII]88 Colbert+99 M82 [OI], [CII] … from PDR [OIII], [NIII] … from HII Regions Courtesy to Toru Yamada-san, Shinki Oyabu-san

(Br alpha @4micron etc…) Mid-IR Metallicity Diagnostics (1) S [Xi+/H+] Requires H+ info… (Br alpha @4micron etc…) [NeII]12.8 + [NeIII]15.6 Ne/H [ArII]6.98 + [ArIII]8.99 Ar/H [SIII]18.7 + [SIV]10.5 S /H [NII]122 + [NIII]57.2 N /H (e.g., Verma+03; Panuzzo+03) TN, RM, et al., in prep. (2) N/O∝O/H For dusty galaxies (ULIRG, SMG, normal SBG) ISO/LWS: only z~0 Herschel/PACS: z<0.2 1<z<2 seems very interesting!! Courtesy to Tohru Nagao-san

Success Cliterion & Observation Plan 成功基準: 赤方偏移2~3までの様々な銀河について、広帯域中分散分光観測の統計的研究を行うことにより、初期の宇宙(90億年前まで)の銀河の物理化学状態を明らかにする。 観測計画: SAFARI及びMIRMESによる10~210mm中分散(R~1000)分光観測を、様々な赤方偏移の塵に覆われた赤外銀河(合計200個)について実行 200個×(SAFARI 1hr + MIRMES 1hr)=net 400hrs MIRACLEによる周辺領域も含む撮像 BLISSによる比較的遠方天体の~400mmまでの精密・超高感度分光

Extragalactic Science :Objective #4 Super-Massive Black-Hole growth history 科学目的 Objective 銀河の進化における超巨大ブラックホール※の役割を解明するため、他の手法では観測が困難な星間塵に囲まれた形成中の超巨大ブラックホールを、初期宇宙にいたるまで探査する。 ※太陽の数億個に相当する質量があると思われるブラックホール In order to understand the role of supper-massive black holes (SMBHs) in the galaxy evolution, we will make a survey for the forming SMBHs, that may not be observed easily in other methods due to the obscuration by dust, from the present to the early universe. 科学目標 Target 星間塵の影響を受けない赤外線撮像・分光観測により、他の手法では観測が困難な星間塵に囲まれた形成中の超巨大ブラックホールを、現在の宇宙から初期宇宙に至るまで広く探査し、TBD個のサンプルを構築する。これと、銀河形成史の観測結果とをくみあわせて、銀河の進化における超巨大ブラックホールの役割を解明する。 We will make infrared imaging & spectroscopic observations of TBD number of the forming super-massive black holes (SMBHs), that can not be observed easily in other methods due to the obscuration of dust, from the present to the early universe. Supplementing these results with the results of observations for the galaxy formation history, we will understand the role of SMBHs in the galaxy evolution. 中間赤外線撮像・低分散分光装置 MIRACLE 中間赤外線中分散分光装置 MIRMES 遠赤外線撮像分光装置 SAFARI    

Universe obscured by dust ELAIS / SWIRE : ~200 15 micron sources with spec-z Gruppioni et al. (2008) Key issue to understand the Dusty Galaxies : Relation between the Star-formation and Super Massive Black Hole ? AGN with torus (left) can be studied by optical spectroscopy, however many AGN are buried in dusty cloud (right) One of the key topics of this session is to discuss if there is a relation between the star-formation activity and the activity triggered by the SMBH in the dusty galaxies Compared to the typical AGN with dust torus, there is glowing interest on the burried AGNs which cannot be studied with either optical or X-rays, Courtesy to Imanishi-san 29

5-35 mm spectra of ULIRGs この先は秋山さんが話します Active Sturburst Buried AGN Optically (X-ray) selected AGN Buried AGN 5-35 mm spectra of ULIRGs Active Sturburst Buried AGN Starburst + AGN 9.7um 18um PAH With Spitzer & AKARI, only 24 micron-very-bright ULIRGs (biased sample) could be studied at z > 1: SPICA enables us to go to z > 3 and to general ULIRGs at z > 1 !! PAH strong PAH weak Silicate abs. strong この先は秋山さんが話します

Extragalactic Science :Objective #5 Cosmic SF & Mass Assembly History Extragalactic Science :Objective #5 科学目的 Objective 銀河の星形成史・質量集積史を、銀河団や大規模構造の形成過程と銀河進化への影響との関わりの中で、解明する。 We will reveal the star-formation & mass assembly history of galaxies in relation to the forming processes of the galaxy clusters and the large scale structures, as well as the environmental effect on the galaxy evolution. 科学目標 Target 星形成活動のピーク(70-100億年前、z=1~2)があったとされる時代の宇宙において、放射エネルギーが赤方偏移してきた赤外線領域で、大規模構造をトレースできるほどの広い天域(~300メガパーセク相当)をサーベイし、銀河団や大規模構造を観測する。これにより、宇宙星形成史・質量集積史および銀河進化に対する環境効果を解明する。 In the early universe where the star forming activities was at a peak, we will undertake imaging wide-area survey and observe the galaxy clusters and the large scale structures at infrared wavelength, to which the redshifted emitting energy shifts. The large survey area (corresponding to ~300 Mpc) can trace the large scale structures, and we will reveal the star formation history in the early universe (up to 9 Gyr ago) as well as the mass assembly history and its environmental effect on the galaxy evolution. 中間赤外線撮像装置 MIRACLE 遠赤外線撮像装置 SAFARI 

SPICAMIR-cam (JWST MIRIの20倍)で探る宇宙の質量集積史 6.6’×6.6’ z = 30 z = 5 z = 3 6.6’×6.6’ MIRI MIRI MIR-cam MIR-cam z = 2 z = 1 z = 0 6.6’×6.6’ Cosmic variance. Biased galaxy formation and environmental effects. MIRI この先は小山さんが話します MIR-cam Yahagi et al. (2005) A Massive Cluster (6×1014 M◎), 20×20Mpc2 (co-moving)

ここでいったん中断です

Role of SPICA for future study of distant Universe Overwhelming Imaging Sensitivity at 20-100 mm (MIRACLE, SAFARI) Overwhelming mapping speed !! MIRACLE should have large FoV as much as possible Capability of spectro-imaging at 35-210mm (SAFARI)

Overwhelming Sensitivity Imaging @ l < 100 mm Herschel Imaging

SAFARI’s advantage on Mapping Speed Multiplex advantage can only appear in the low-resolution, “SED” mode(l/Dl~100). With l/Dl=100, the strong lines ( [OI] & [CII] ) can still be detected GOODs-S MIPS S24>=100mJy sources , corresponding 2-4mJy at 100mm (M82 SED at z=1-2)

Role of SPICA for future study of distant Universe Overwhelming Imaging Sensitivity at 20-100 mm (MIRACLE, SAFARI) Overwhelming mapping speed !! MIRACLE should have large FoV as much as possible Capability of spectro-imaging at 35-210mm (SAFARI) Overwhelming Spectroscopic sensitivity at 30 – 400 mm (MIRMES, SAFARI, BLISS)

Sensitivity for spectral lines (1 hour, 5s) IRSx0.1 BLISS

今後の課題・問題点 Nature of re-ionization sources 目標が高すぎないか。Feasibilityをよく検討し、成功基準の見直しを。 JWSTが成果を出した後、それをどう活かす? 他のアプローチは?(重力レンズ? GRB afterglow?) Super-Massive Black-Hole growth history 既知天体に重きを置くのか、新発見天体に重きをおくのか? Cosmic SF & Mass Assembly History JWSTでも柱となるサイエンス。どのような天体〔銀河団?〕をどれくらいの広さでカバーすることが本質的か、さらにつめる どの科学目標についても、観測計画の具体的検討、必要な観測時間の見積もりが急務 Legacy programとしての現実性 ミッション要求に反映 (そろそろ「要求」はFIXしなければならない!) 波長分解能は今のところ中分散で充分と考えているが? 高分散分光で拓くKey Science Objectiveは?(例えば水素分子吸収線をQSOを背景に見れないか?)