母分散が既知あるいは大標本の 平均に関する統計的検定

Slides:



Advertisements
Similar presentations
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
Advertisements

頻度の分析 頻度データ 着果率,発芽率,生存率 離散量と離散量の比率である 頻度データに相当しないパーセント表記 のデータ 糖度,含水率 連続量と連続量の比率である.
統計解析第 11 回 第 15 章 有意性検定. 今日学ぶこと 仮説の設定 – 帰無仮説、対立仮説 検定 – 棄却域、有意水準 – 片側検定、両側検定 過誤 – 第 1 種の過誤、第 2 種の過誤、検出力.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
4. 統計的検定 ( ダイジェスト版 ) 保健統計 2014 年度. Ⅰ 仮説検定の考え方 次のような問題を考える。 2014 年のセンター試験、英語の平均点は 119 点であった。 T 高校では 3 年生全員がセンター試験を受験したが、受験生の中から 25 人を選んで調査したところ、その平均点は.
第4章 統計的検定 統計学 2007年度.
第4回 関連2群と一標本t検定 問題例1 6人の高血圧の患者に降圧剤(A薬)を投与し、前後の収縮期血圧 を測定した結果である。
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
第4章補足 分散分析法入門 統計学 2010年度.
      仮説と検定.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
ホーエル『初等統計学』 第8章1節~3節 仮説の検定(1)
推定の精度 例: 宍道湖に生育するある魚が今回の大水害でどのような影響を 受けたかを明らかにするために,魚を捕獲して調査しようとした.
みかけの相関関係 1:時系列 2つの変数に本来関係がないのに,データだけから相関係数を計算すると相関係数がかなり大きくなることがある.
検定 P.137.
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
4. 統計的検定 保健統計 2009年度.
第4回 (10/16) 授業の学習目標 先輩の卒論の調査に協力する。 2つの定量的変数間の関係を調べる最も簡単な方法は?
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
第9回 二標本ノンパラメトリック検定 例1:健常者8人を30分間ジョギングさせ、その前後で血中の
統計的推定と検定 推定: 統計的に標本の統計量から母集団の母数(母平均・母標準偏差など)を推測することを統計的推定という 検定:
臨界値の算出法(Excelの場合) =normsinv( 確率 ) 下側累積確率Pr(z≦z0)に対応するz値
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
心理統計学 II 第7回 (11/13) 授業の学習目標 相関係数のまとめと具体的な計算例の復習 相関係数の実習.
第6章 2つの平均値を比較する 2つの平均値を比較する方法の説明    独立な2群の平均値差の検定   対応のある2群の平均値差の検定.
繰り返しのない二元配置の分散分析 データの値は,それぞれ偶然誤差による変動と処理の効果による変動とが重なってできている.
確率・統計Ⅱ 第7回.
統計学勉強会 対応のあるt検定 理論生態学研究室 3年 新藤 茜.
カイ二乗検定の応用 カイ二乗検定はメンデル遺伝の分離比や計数(比率)データの標本(群)の差の検定にも利用できる 自由度
母集団平均値の区間推定 大標本の区間推定 小標本の区間推定.
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
統計学  西 山.
統計解析 第10回 12章 標本抽出、13章 標本分布.
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
対応のあるデータの時のt検定 重さの測定値(g) 例:
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
Excelによる実験計画法演習 小木哲朗.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
繰り返しのない二元配置の例 ヤギに与えると成長がよくなる4種類の薬(A~D,対照区)とふだんの餌の組み合わせ
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
確率と統計 年1月12日(木)講義資料B Version 4.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
統計処理2  t検定・分散分析.
1.母平均の検定:小標本場合 2.母集団平均の差の検定
母分散の検定 母分散の比の検定 カイ2乗分布の応用
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
確率と統計2009 第12日目(A).
統計的検定   1.検定の考え方 2.母集団平均の検定.
母分散の検定 母分散の比の検定 カイ2乗分布の応用
第4章 統計的検定 (その2) 統計学 2006年度.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
統計学  第9回 西 山.
推定と予測の違い 池の魚の体重の母平均を知りたい→推定 池の魚を無作為に10匹抽出して調査 次に釣り上げる魚の体重を知りたい→予測
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
数理統計学  第12回 西 山.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
確率と統計 年12月16日(木) Version 3.
確率と統計 年1月7日(木) Version 3.
Presentation transcript:

母分散が既知あるいは大標本の 平均に関する統計的検定 標本平均は標本の大きさが十分に大きければ,正規分布に従う 例: A農場で出荷する桃の重さの標準偏差σは20gである.桃の重さの平均が150gとなるように出荷する.ある日の調査では100個の桃の重さを量ったところ,平均145gであった.桃の重さの母平均は150gではないのかを検定せよ. 帰無仮説H0: 「桃の重さの母平均は150gである」 平均に関する統計的検定を学びます.今回はある決まった平均に対する検定で,標本数が100以上の時に利用する検定です(z検定ということもあります).実際には次回に学ぶt検定を使用することがほとんどですが,基本的な検定ですので,今回取り上げます. 例題です.A農場で出荷する桃の重さの標準偏差σは20gです.桃の重さの平均が150gとなるように出荷します.ある日の調査では100個の桃の重さを量ったところ,平均145gでした.桃の重さの母平均は150gではないのかを検定しましょう. まず帰無仮説を立てます.この場合の帰無仮説は「桃の重さの母平均は150gである」です.次に帰無仮説が棄却されたときに採用する対立仮説を立てます.対立仮説は,「桃の重さの母平均は150gでない」です.帰無仮説はそれを元に確率を計算する仮説ですから,=で結ばれた式を使います.一方,対立仮説は帰無仮説を否定しますから,≠で結ばれた式を使います.≠で結ばれた式では確率計算しようがないことに注意しましょう. 対立仮説H1: 「桃の重さの母平均は150gでない」

p-値:今回のデータの得られる確率 次に帰無仮説が成り立つとすると今回のデータが得られる確率(有意確率,p値)を計算します.第5回検定タブにある計算シートを使ってp-値を計算できます.標本数,標本平均,標本標準偏差,母平均を代入するだけです.母平均は帰無仮説で示した値のことです.

検定結果 したがって,帰無仮説 が成り立つとき,今回の標本 が得られる確率は0.012である. 有意水準(危険率)5%では帰無仮説は棄却される (有意水準5%で有意である) 有意水準5%で桃の重さの母平均は150gではない この場合,p値は0.012となります.したがって,有意水準(危険率)5%では帰無仮説は棄却され,すなわち有意水準5%で有意であるといえます,したがって,有意水準5%で桃の重さの母平均は150gではないという結論になります. 有意水準(危険率)1%では帰無仮説は棄却できません,すなわち有意水準1%では有意ではないということです.結論は有意水準1%で桃の重さの母平均が150gでないとはいえないとなります. 帰無仮説が棄却できないときの表現に注意しましょう. 有意水準(危険率)1%では帰無仮説は棄却されない (有意水準1%では有意ではない) 有意水準1%で桃の重さの母平均が150gでないとはいえない

予習問題 C村は塩分の濃い食事で有名であり,寿命が短いといわれる. 村民の平均寿命は100人調べたところ,70.2歳,標準偏差は 0.9歳だった.平均寿命が70歳であるかを有意水準5%で検定せよ それでは予習問題をやってみましょう.予習は「生物統計学第4回宿題と第5回のための予習2013 」の提出用タブ欄に入力して提出してください.