大部分の細胞はグルコースを燃料として使用する。グルコースは解糖系によって多段階からなる一連の反応で代謝され、結果的にピルビン酸を生成する。典型的な細胞では、このピルビン酸の多くはミトコンドリアに入り、そこでクレブス回路によって酸化されてATPを産生し、細胞のエネルギー需要に応えている。しかし、癌細胞や他の高度に分裂している細胞においては、解糖系から供給されるこのピルビン酸の多くは、ミトコンドリアとは離れて、乳酸脱水素酵素 (LDH) の働きによって乳酸を生成する。乳酸の産生は、通常であれば酸素レベルが低い時の嫌気条件下に限るのであるが、癌細胞は酸素が多くある時であってもグルコースを乳酸の生成に向けている。これを「好気的な解糖」あるいはワールブルク効果と呼ぶ。 Warburg effectはがん細胞が正常細胞よりも高速でグルコースを取り込むにもかかわらず、酸化的リン酸化に用いるグルコース量が少ないという現象のことを指す。 http://www.cstj.co.jp/reference/pathway/warburg_effect.php
SIRT6 and its link to aging One of the longevity genes discovered encodes a protein called SIRT1, which is 1 of 7 proteins. These proteins are known as a class III histone deacetlyase, which means that they use NAD+ to remove Lysine acetyl from proteins or histones. Eventually the function of SIRT6 was discovered by researchers observing that SIRT6 knockout mice showed a premature aging phenotype (Mostoslavsky et al., 2006). It was believed that this aging phenotype is due to SIRT6 being a histone H3 lysine 9 deacetylase specific at telomeric chromatin and this lead to telemoric dysfunction (Michishita et al., 2008). The latest discover seems to suggest that the SIRT6 knockout aging phenotype is instead due to SIRT6 deacetylating H3 lysine 9 histones near NF-kB target gene promoters and SIRT6 is recruited there through a direct a physical interaction with RELA (Kawahara et al., 2008). SIRT6 deacetylation of histones near NF-kB genes lead to decreased NF-kB genes expression and prevents apoptosis and cellular senescenceing via NF-kB. So the disease phenotype of premature aging is brought on by loss of SIRT6, which makes NF-kB genes more active leading to increased cell death. This increased cell death due to hyperactive NF-kB genes leads to premature aging in the mice by increasing cell senescenceing and apoptosis . This knowledge that SIRT6 has some role in the aging process leads to the possible hope of some pharmaceutical intervention that could extend an organism life spain. http://devriesgen677s09.weebly.com/
Figure 4. Oncogenic alterations of glycolytic metabolism and their influence on malignant behavior (see text for details). Membrane transporter (GLUT1 and 3, glucose transporter type 1 and 3; MCT, monocarboxylate transporter). Glycolytic pathway (HK-II, hexokinase type II, bound to mitochondrial surface; PFK1-L, phosphofructokinase 1, type L; PK-M2, pyruvate kinase M2; glu-6-P, glucose-6-phosphate; fru-6-P, fructose-6-phosphate; fru-1,6-bP, fructose-1,6-bisphosphate; fru-2,6-bP, fructose-2,6-bisphosphate; PEP, phospoenolpyruvate). Other factors: NFκB, nuclear factor kappa B; pVHL, von Hippel-Lindau protein; HPV16/E7, human papillomavirus type 16, E7 oncoprotein; oncogenes (c-myc, ras); and mutated p53.
Immunohistochemistry; IHC 免疫組織化学染色