Compact Sealed lithium target for accelerator-driven BNCT system

Slides:



Advertisements
Similar presentations
Introduction to New Media Development Association June 2001 このプレゼンテーションでは、出 席者間で討論をし、アクション アイテムを作成する場合があり ます。 PowerPoint を使ってプ レゼンテーションの実行中にア クション アイテムを作成する.
Advertisements

Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
BCD : Physics Options  e , e - e -, GigaZ, fixed target T. Omori 2005 年 12 月 20 日 BCD
極紫外撮像分光装置 (EIS) 国立天文台 渡 邊 鉄 哉
小水力班/ Small Hydro Generation Group 研究背景 / Research background
The Bar バー.
Chapter 11 Queues 行列.
CSWパラレルイベント報告 ヒューマンライツ・ナウ        後藤 弘子.
ひな祭り.
熱中性子ラジオグラフィ用-新規LiFシンチレータ、
An accompanied Long Range Potential in NN interaction
What did you do, mate? Plain-Past
AP 私の食生活 Write a paragraph summarizing the data you collected. Include some conclusions. Present to your partner. Up to 90 sec.
1次陽子ビームのエネルギーが ニュートリノ・フラックスおよび機器に 与える影響について
Training on Planning & Setting Goals
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
Let’s discuss in English! What are your opinions? Let’s discuss it!
SP0 check.
Irradiated Polarized Target
Power Electronics center
著者:外岡秀行 著者:外岡秀行 著者:新井康平 著者:新井康平 著者:新井康平 著者:新井康平.
十年生の 日本語 Year 10 Writing Portfolio
定期考査2 英語.
The Sacred Deer of 奈良(なら)
CRLA Project Assisting the Project of
“You Should Go To Kyoto”
Second RF-Gun beamline
YMC Pro Series of ODS Columns
X線天文衛星用CCDカメラの 放射線バックグランドの評価
ストップウォッチの カード ストップウォッチの カード
Topics on Japan これらは、過去のインターンが作成したパワポの写真です。毎回、同じような題材が多いため、皆さんの出身地等、ここにない題材も取り上げるようにしてください。
2018/11/19 The Recent Results of (Pseudo-)Scalar Mesons/Glueballs at BES2 XU Guofa J/ Group IHEP,Beijing 2018/11/19 《全国第七届高能物理年会》 《全国第七届高能物理年会》
Jig change over trolley for Shock Absorber Assembly Line
Muonic atom and anti-nucleonic atom
全国粒子物理会 桂林 2019/1/14 Implications of the scalar meson structure from B SP decays within PQCD approach Yuelong Shen IHEP, CAS In collaboration with.
MeV internal meeting Oct. 2, 2015
CALL FOR APPLICATION 東大院生 参加者募集 2018 SciREX Summer Camp
New York Times Translations
My Favorite Movie I will introduce my favorite movie.
G. Hanson et al. Phys. Rev. Lett. 35 (1975) 1609
クイズやゲーム形式で紹介した実例です。いずれも過去のインターン作です。
フレアの非熱的成分とサイズ依存性    D1 政田洋平      速報@太陽雑誌会(10/24).
研究会 「LHCが切り拓く新しい素粒子物理学」
RIKEN VTX software meeting
京大理 身内賢太朗 平成19年度東京大学宇宙線研究所 共同利用研究成果発表会
超伝導回路を用いた 物理乱数発生回路の研究
PICO-LON dark matter search K.Fushimi for PICO-LON collaboration
References and Discussion
留学生のための就活ガイダンス Ⅰ Job-hunting Support Course I for International Students 日本での就職活動は何から始めれば良い?どんなことに気をつけるべき?と いった基本的なことから、ESや履歴書の書き方など実践的なことまで学ぶ ことができます。
第8回東邦大学複合物性研究センターシンポジウム 「機能性材料の最前線」
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
Term paper, report (2nd, final)
シミュレーションサマースクール課題 降着円盤とジェット
第69回 創薬科学セミナー 名古屋大学 大学院 創薬科学研究科 主催 講演タイトル: 講師: Dr. Scott D. Smid Ph.D.
素核研、物理第4研究系、石山博恒 •Facility Plan • Research Subjects
どのような特徴を見ているのか ― 計算の目的
ー生命倫理の授業を通して生徒の意識に何が生じたかー
One Day Tour Date: August 16 (Sightseeing Spots) Matsue Castle
大強度ビームにふさわしい実験装置をつくろう Kenichi Imai (JAEA)
Igor Petenko et al. Geophysical Research Abstracts Vol. 15, EGU , 2013
The Facilitative Cues in Learning Complex Recursive Structures
MO装置開発 Core part of RTR-MOI Photograph of core part.
Cluster EG Face To Face meeting
Grammar Point 2: Describing the locations of objects
Preflare Features in Radios and in Hard X-Rays
Spectral Function Approach
Apply sound transmission to soundproofing
Cluster EG Face To Face meeting 3rd
Improving Strategic Play in Shogi by Using Move Sequence Trees
Goldscmidt2019, Barcelona, August 20, 2019
Presentation transcript:

Compact Sealed lithium target for accelerator-driven BNCT system 6th High Power Targetry Workshop (11 – 15 April 2016, Merton College Oxford) Compact Sealed lithium target for accelerator-driven BNCT system Kazuki Tsuchida and Yoshiaki Kiyanagi Nagoya University p1

What is BNCT ( Boron Neutron Capture Therapy )? Cancer cells in the affected area could be killed individually by irradiating neutrons to the 10B accumulated in the cancer cells, because an alpha particle and a 7Li nucleus produced by a 10B fission process would travel less than the size of a cell. BNCT clinical application was started by using a nuclear reactor in BNL (Sweet et al. ) and also MIT in 1950’s. Dr. Hatanaka successfully applied BNCT to brain malignant glioma in 1974 and some Japanese medical doctors continued basic research and clinical applications of BNCT by using nuclear reactors. Cancer cell 10B + n → 7Li + α + 2.38MeV 10B n 7Li α Normal cell Thermal neutrons Particle range 4μm  9μm          ( < Cell size ~10μm ) To establish the BNCT as one of cancer treatments in the hospital, it is needed to develop accelerator-driven neutron sources, taking over the nuclear reactor-based one. Dr. Locker presented the basic idea of the BNCT in 1936, 4 years after Chadwick discovered the neutron. However, BNL and MIT trials were failed due to the low accumulation of boron compound and improper characteristics of neutron beam.

Two BNCT facilities are in the clinical trial phase and Four BNCT facilities are under construction in Japan. Cyclotron & Be target Minami Tohoku Hospital ( Clinical trial 2016 ~ ) Linac & Be target Tsukuba Univ. ( Under commissioning ) Osaka Medical Univ. ( Under construction ) Linac & Li target Kyoto Univ. (kumatori) ( Clinical trial 2013 ~ ) National Cancer Center (Const. completed) Okinawa ( Planning ) Edogawa Hospital ( Construction 2017~) DC Acc. & Li target Osaka Univ. ( Planning ) Nagoya Univ. ( Under commissioning )

Accelerator-driven neutron source for BNCT proton Fast neutron Epi thermal neutron Accelerator Target Beam Shaping Assembly Treatment region Proton 2 – 30 MeV 40 – 80 kW Li, Be Specifications of the BNCT system for clinical application Sufficient flux and good quality of epi thermal neutron beam (IAEA TECDOC* ) Epi thermal neutron flux Nepi > 1 x 109 n/cm2 s ( En : 0.5 eV -10 keV ) Contamination of fast neutron Df ≦2×10-13 Gy・cm2 Contamination of thermal neutron and γ-ray, Current / flux ratio (2) Reduction radiation exposure to medical and maintenance staffs (3) Low activation of accelerator and facility (4) Safe and good reliability as a medical equipment (5) Easy and quick maintenance (6) Low construction and running costs 原子炉に代わる新たな中性子源として加速器を利用するという試みがある 加速器を用いた中性子源としてこの4つが主にあげられる。 4つを読まない 町中の病院施設の併設可能性 加速粒子を金属ターゲットに当てて、その際生じる核反応を利用する これまで検討されてきた反応としてこれらがあげられる * IAEA-TECDOC-1223 ”Current states of neutron capture therapy”, IAEA (2001).

Many types of accelerator-driven neutron system are developed or developing in Japan. The 2nd and 3rd system will be operated for BNCT application in a few years.

Neutron spectrum of neutrons Spatially-varied neutron spectrum in the BSA 2m H+ 30MeV Be target Epithermal region Li target H+ 2.8MeV 1.2m Neutron spectrum of neutrons in the BSA (Lethargy)

Development of a sealed Li target for BNCT application A compact sealed lithium target is under development for BNCT application and it’s applicability will be confirmed in combination with a Dynamitron. mA). Compact & Sealed Li target 15mA

Cross sectional view of the Compact Sealed Li target Completed Ta backing plate is connected to a Cu cooling base by HIP process*. The emboss-structure is prepared on the surface of Ta plate. Ta : High threshold for blistering ( H+ fluence > 1.6 x 1021 H+/cm2 ) High corrosion resistance and good wettability for liquid Lithium (2) Thin Ti foil is jointed to the Ta plate by Hot press process. Ti : High corrosion resistance and good wettability for liquid Lithium (3) Li is set in the thin space of the emboss structure. ← Under development (4) Proton beam is irradiate to the Li through the Ti foil. Li and Be-7 can be confined in the target by the Ti foil. Proton Beam ( >2.8MeV, 42kW ) Power density : 6.6 MW / m2 ( Irradiation area = 80 x 80 mm2) こんなターゲットつかうよ的な説明 一番問題は熱除去なので、充填方法や接合方法は後回し エンボスの説明いらない。 Ti or Be foil ( t ~ 10 μm ) Li layer ( t ~ 0.14mm ) Cooling water Cu base (130 x 130 mm) Ta backing plate ( *HIP : Hot Isostatic Press )

Heat transfer improvement by a turbulent water flow V-staggered rib Parallel rib Water flow Water flow Proton Beam Proton Beam Water flow Water flow This drawing is indicated by turn upside down. RANS (Reynolds-averaged Navier–Stokes) analysis

Temperature analysis of the Li target - Input data - The energy deposition of the 2.8MeV proton in each layers of the Li target can be calculated by the SRIM code. Ti Li Ta (1) Ti layer : 0.34 MeV (2) Li layer : 1.07 MeV (3) Ta layer : 1.39 MeV ( In the penetration depth of10 µm ) Proton 2.8 MeV,15 mA on the 80x80 ( ㎝2 ) Ti foil Li layer Ta layer Water Cu plate Heat conduction rate h = 1.1×105 [W/m2/K] Water temperature = 20 ℃

Temperature analysis of the Li target Maximum temperature of the Li target surface is calculated to be143℃, when the proton beam of 42 kW is irradiated on the area of 8 x 8 cm2 ⇒ We could solved the issue of the heat removable form the Li target. Temperature [ K ]  その時の平衡時の温度シミュレーション結果がこちらです。 詳細な温度推定を行う予定 さらに面積を減らした場合でもいけるかも もともと中性子を発生させるためのターゲットなので、照射面積が小さい方が中性子が拡散せず、患部に集中的に照射が可能である。そのため、もともと照射面積80mm×80mmの予定であったが、より狭い照射面積でも、温度上昇は抑えることが可能なので、シミュレーションを行った。 実際には、Ti-Ta間、Ta-Cu間の接合部に熱抵抗が発生し、これより温度は高くなる 今後、Ta、Tiを含むターゲットにて同様の熱付加試験を行う必要がある 6.5625kWの時159℃まで温度が上昇

Strengthened metallic foil for the Sealed Li target (1) For BNCT medical application, Li and Be-7 should be confined in the target by a secure metallic foil during the target life (> 160 hours), which is limited by the damage of Ta backing plate due to the blistering. (2) To improve the strength of the metallic foil, we developed a titanium alloy foil (10μm).    Titanium Alloy-1     Ti – Al (0.5) – Si (0.4) (mass%) (3) This has high strength (3 times higher than pure titanium at 400℃), good oxidation resistance and good formability ( same as pure titanium).

Concept of BNCT with gantry system By developing a confined Li target, compact BNCT system with a gantry would be realized and patients could be treated under a prevention of stress by the advanced BNCT system. Target & Moderator System Size Φ1.2m x L1m Weight ~6 tons H+ Neutron Gantry system Treatment table This concept was proposed by IBA (Appl. Rad. Isotopes. 67 (2009) S262

Member of Nagoya BNCT Project K. Tsuchida1, Y. Kiyanagi1 Y. Menjo2,Furuzawa2, A. Uritani2, K. Watanabe2, Yamazaki2, Tsuji2, Tsuneyoshi2 H. M. Shimizu3, K. Hirota3, M. Kitaguchi3, G. Ichikawa3, F. Hiraga4 (Nagoya University) 1 Accelerator-based BNCT system, Graduate School of Engineering 2 Materials, Physics and Energy Engineering, Graduate School of Engineering 3 Department of Physics, Graduate School of Science (Hokkaido University) 4 Quantum Science and Engineering, Graduate School of Engineering

Thank you for your attention!! Trill (11 years)