モノクローナル抗体製剤の進歩 免疫原性 完全マウス型抗体 1st 世代 キメラ型抗体 2nd 世代 ヒト化抗体 3rd 世代 完全ヒト型抗体

Slides:



Advertisements
Similar presentations
生物学的製剤と小分子化合物製剤 1. Generics and Biosimilars Initiative. (2012, June 29). Small molecule versus biological drugs. Accessed
Advertisements

だい六か – クリスマスとお正月 ぶんぽう. て form review ► Group 1 Verbs ► Have two or more ひらがな in the verb stem AND ► The final sound of the verb stem is from the い row.
て -form - Making て -form from ます -form -. With て -form, You can say... ~てもいいですか? (= May I do…) ~てください。 (= Please do…) ~ています。 (= am/is/are doing…) Connecting.
第 5 章 2 次元モデル Chapter 5 2-dimensional model. Contents 1.2 次元モデル 2-dimensional model 2. 弱形式 Weak form 3.FEM 近似 FEM approximation 4. まとめ Summary.
Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
VE 01 え form What is え form? え? You can do that many things with え form?
The Bar バー.
五段動詞の歌 ごだんどうしのうた.
Chapter 11 Queues 行列.
日本語... ジェパディー! This is a template for you to use in your classroom.
Verb てform + から、 After.
Recognise, ask about and talk about purpose
と.
3月6日(金曜日) 漢字 #6-10 Verbs! (continued) Particles Time References
With Miss Digitally Angry Clock-Face
Bellwork: English meaning? 1)はじめまして 2)どうぞ 3)すみません 4)おはようございます 5)しゅくだい
CSWパラレルイベント報告 ヒューマンライツ・ナウ        後藤 弘子.
Location nouns.
Chris Burgess (1号館1308研究室、内線164)
What did you do, mate? Plain-Past
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
Noun の 間(に) + Adjective Verb てform + いる間(に) during/while.
SP0 check.
How do you talk about Positions/ Locations?
Verb たform + ことがあります Past experience.
大部分の細胞はグルコースを燃料として使用する。グルコースは解糖系によって多段階からなる一連の反応で代謝され、結果的にピルビン酸を生成する。典型的な細胞では、このピルビン酸の多くはミトコンドリアに入り、そこでクレブス回路によって酸化されてATPを産生し、細胞のエネルギー需要に応えている。しかし、癌細胞や他の高度に分裂している細胞においては、解糖系から供給されるこのピルビン酸の多くは、ミトコンドリアとは離れて、乳酸脱水素酵素.
Chapter 6 Jade 翡翠(ヒスイ).
Tohoku University Kyo Tsukada
A 02 I like sushi! I like origami!
抗体研究・抗体製剤開発の歴史 Ref 3/Prull 2003/pg334/para2
にほんご JPN101 Sep. 23, 2009 (Wednesday).
十年生の 日本語 Year 10 Writing Portfolio
Group meeting 2016/5/13 Katsuhiro Umeda.
Reasonので + Consequence clause
Licensing information
Chapter 4 Quiz #2 Verbs Particles を、に、で
The Sacred Deer of 奈良(なら)
CRLA Project Assisting the Project of
“You Should Go To Kyoto”
ストップウォッチの カード ストップウォッチの カード
Topics on Japan これらは、過去のインターンが作成したパワポの写真です。毎回、同じような題材が多いため、皆さんの出身地等、ここにない題材も取り上げるようにしてください。
2018/11/19 The Recent Results of (Pseudo-)Scalar Mesons/Glueballs at BES2 XU Guofa J/ Group IHEP,Beijing 2018/11/19 《全国第七届高能物理年会》 《全国第七届高能物理年会》
抗体は、感染症から生体を防御するために産生される蛋白質である
Input slides 1 – 11 – teacher says word - pupils repeat – word appears on click Ohayoo. おはよう。
National adviser Japanese Yuriko Kayamoto
Causative Verbs Extensively borrowed from Rubin, J “Gone Fishin’”, Power Japanese (1992: Kodansha:Tokyo) Created by K McMahon.
Traits 形質.
Term paper, Report (1st, first)
My Favorite Movie I will introduce my favorite movie.
Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus
Michael Jeffrey Jordan
第24回応用言語学講座公開連続講演会 後援:国際言語文化研究科教育研究プロジェクト経費
受け身の疑問文 Practice ~ed・・・?.
There is/are X (living thing)
My Dance Circle December 13, 2018  表紙 my dance circle.
Question Words….
いくらですか?.
Lesson 1 第一課   これ は 本 です。.
2019年4月8日星期一 I. EPL 84, (2008) 2019年4月8日星期一.
Expressing uncertainty: Might
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
Term paper, report (2nd, final)
Genetic Statistics Lectures (4) Evaluation of a region with SNPs
第69回 創薬科学セミナー 名古屋大学 大学院 創薬科学研究科 主催 講演タイトル: 講師: Dr. Scott D. Smid Ph.D.
ー生命倫理の授業を通して生徒の意識に何が生じたかー
The difference between adjectives and adverbs
Cluster EG Face To Face meeting
Grammar Point 2: Describing the locations of objects
アノテーションガイドラインの管理を行う アノテーションシステムの提案
Improving Strategic Play in Shogi by Using Move Sequence Trees
Presentation transcript:

モノクローナル抗体製剤の進歩 免疫原性 完全マウス型抗体 1st 世代 キメラ型抗体 2nd 世代 ヒト化抗体 3rd 世代 完全ヒト型抗体 免疫原性高度 100% マウス 例: ibritumomab マウス可変領域 マウス定常領域 ヒト可変領域 ヒト定常領域 免疫原性あり ~30% マウス 例: rituximab abciximab 免疫原性低度 ~5-10% マウス 例: trastuzumab bevacizumab 免疫原性なし 例: adalimumab panitumumab Ref 1/ Foltz 2013/ pg 2225/ figure 2 Ref 2/ Nelson 2010/ pg771/ table 1 & pg 768/ box 1 免疫原性 完全マウス型抗体 1st 世代 キメラ型抗体 2nd 世代 ヒト化抗体 3rd 世代 完全ヒト型抗体 4th 世代 The first therapeutic monoclonal antibodies were developed in mice. These fully mouse antibodies are recognised by the human immune system as foreign and are immunogenic. Immunogenicity against the therapeutic antibody leads to destruction of the antibody and can also result in hypersensitivity or allergic reaction. Second and third generation monoclonal antibodies incorporate all or some of the mouse variable region but retain a human constant region. Such fusion proteins have decreased immunogenicity in comparison to the fully mouse antibody. Current biotechnology practices enable the creation of fully human antibodies for use as therapeutics. These have the lowest potential for immunogenicity and are the gold standard in development today. 1 Catapano, A. a. (2013). The safety of therapeutic monoclonal antibodies: Implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis, 1-11. 1. Foltz I et al. Circulation 2013 Jun 4;127(22):2222-30; 2. Nelson AL et al. Nature Reviews Drug Discovery 2010 Oct;9(10):767-74. この2つの文献より作図

バイオテクノロジーの進歩が、マウスにヒト化抗体および 完全ヒト型抗体を産生させることを可能にした 野生型マウス* ヒト化抗体 マウスの可変鎖の一部(CDR)(赤)と完全ヒト型抗体骨格(青)が融合する B細胞 抗体発現 トランスジェニックマウス** 完全ヒト型抗体¶ 抗体骨格配列の多様性が生じる B細胞 抗体発現 Key Points: Several technologies exist for producing humanized (>97% human sequence) or “fully” human (100% human sequence) antibodies In this diagram, a common technique is shown whereby mice are the host for producing humanized or human antibodies For the production of a humanized antibody such as bococizumab, wild type mice were immunized with fully human PCSK9 protein, thereby inducing the mice to produce an antibody that fully recognizes the human version of PCSK9 A technique known as ‘CDR grafting’ was then employed which essentially entails splicing the CDRs from the antibody produced in response to the human PCSK9 onto a 100% human framework. For production of “fully” human antibodies, an alternative strategy can be used by generating transgenic or ‘humanized’ mice that express ‘fully’ human IgG antibodies. Here, when the mice are immunized with the protein of interest, such as PCSK9, the mice produce human IgGs against the protein. The main difference between these two protocols is that with humanized antibodies, the engineering steps takes place at the tail end by allowing for selection of CDRs that have the strongest binding and grafting them onto the desired IgG framework. For the production of ‘fully’ human antibodies, the engineering step takes place at the front end by creation of the transgenic mice that are able to express human IgGs. It is also important to note that one of the natural ways antibody diversity is generated in the immune response is due to somatic hypermutation - an adaptive process whereby gene rearrangements and gene mutations result in a diverse repertoire of antibodies with varying affinities for a particular target. In other words, due to this natural process, “fully” human antibodies are not technically fully human since they would inevitably differ from the germline IgG sequences encoded in the DNA. ヒト化抗体、完全ヒト型抗体は、マウスの免疫系で産生される Liang H et al. J Pharmacol Exp Ther. 2012;340(2):228-236.

バイオテクノロジーの進歩が、マウスにヒト化抗体および 完全ヒト型抗体を産生させることを可能にした 野生型マウス* ヒト化抗体 マウスの可変鎖の一部(CDR)(赤)と完全ヒト型抗体骨格(青)が融合する B細胞 抗体発現 トランスジェニックマウス** 完全ヒト型抗体¶ 抗体骨格配列の多様性が生じる B細胞 抗体発現 Key Points: Several technologies exist for producing humanized (>97% human sequence) or “fully” human (100% human sequence) antibodies In this diagram, a common technique is shown whereby mice are the host for producing humanized or human antibodies For the production of a humanized antibody such as bococizumab, wild type mice were immunized with fully human PCSK9 protein, thereby inducing the mice to produce an antibody that fully recognizes the human version of PCSK9 A technique known as ‘CDR grafting’ was then employed which essentially entails splicing the CDRs from the antibody produced in response to the human PCSK9 onto a 100% human framework. For production of “fully” human antibodies, an alternative strategy can be used by generating transgenic or ‘humanized’ mice that express ‘fully’ human IgG antibodies. Here, when the mice are immunized with the protein of interest, such as PCSK9, the mice produce human IgGs against the protein. The main difference between these two protocols is that with humanized antibodies, the engineering steps takes place at the tail end by allowing for selection of CDRs that have the strongest binding and grafting them onto the desired IgG framework. For the production of ‘fully’ human antibodies, the engineering step takes place at the front end by creation of the transgenic mice that are able to express human IgGs. It is also important to note that one of the natural ways antibody diversity is generated in the immune response is due to somatic hypermutation - an adaptive process whereby gene rearrangements and gene mutations result in a diverse repertoire of antibodies with varying affinities for a particular target. In other words, due to this natural process, “fully” human antibodies are not technically fully human since they would inevitably differ from the germline IgG sequences encoded in the DNA. ヒト化抗体、完全ヒト型抗体は、マウスの免疫系で産生される Liang H et al. J Pharmacol Exp Ther. 2012;340(2):228-236.