Introduction to Bioinformatics for Medical Application

Slides:



Advertisements
Similar presentations
ベイズの定理と ベイズ統計学 東京工業大学大学院 社会理工学研究科 前川眞一. 2 Coffe or Tea 珈琲と紅茶のどちらが好きかと聞いた場合、 Star Trek のファンの 60% が紅茶を好む。 Star Wars のファンの 95% が珈琲を好む。 ある人が紅茶を好むと分かったとき、その人が.
Advertisements

だい六か – クリスマスとお正月 ぶんぽう. て form review ► Group 1 Verbs ► Have two or more ひらがな in the verb stem AND ► The final sound of the verb stem is from the い row.
Humble and Honorific Language By: Word-Master Leo, Mixer of Ill Beats.
て -form - Making て -form from ます -form -. With て -form, You can say... ~てもいいですか? (= May I do…) ~てください。 (= Please do…) ~ています。 (= am/is/are doing…) Connecting.
第 5 章 2 次元モデル Chapter 5 2-dimensional model. Contents 1.2 次元モデル 2-dimensional model 2. 弱形式 Weak form 3.FEM 近似 FEM approximation 4. まとめ Summary.
Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
英語特別講座 疑問文 #1    英語特別講座 2011 疑問文.
All Rights Reserved, Copyright (C) Donovan School of English
The Bar バー.
英語勉強会.
第1回レポートの課題 6月15日出題 今回の課題は1問のみ 第2回レポートと併せて本科目の単位を認定 第2回は7月に出題予定
日本語の文法 文型(ぶんけい)をおぼえよう!
Dont’ Ask Me That Question!
THE CONTINUOUS IMPROVEMENT MODEL called ADEC
Chapter 11 Queues 行列.
日本語... ジェパディー! This is a template for you to use in your classroom.
と.
今しましょう Translate the story on the next slide. せんせいは しゅくだいを みます。
2010年7月9日 統計数理研究所 オープンハウス 確率モデル推定パラメータ値を用いた市場木材価格の期間構造変化の探求 Searching for Structural Change in Market-Based Log Price with Regard to the Estimated Parameters.
Chris Burgess (1号館1308研究室、内線164)
じょし Particles.
What did you do, mate? Plain-Past
Verb Plain Negativeform
G: Objectives Can I read all the hiragana? Can I understand Japanese in a movie? Agenda A: Renshu N: らりるれろ、わをん A: Flashcards, えいが G: Can I test.
Object Group ANalizer Graduate School of Information Science and Technology, Osaka University OGAN visualizes representative interactions between a pair.
英語特別講座 代名詞・前置詞・形容詞・助動詞 #1   
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
Noun の 間(に) + Adjective Verb てform + いる間(に) during/while.
A 02 I like sushi! I like origami!
十年生の 日本語 Year 10 Writing Portfolio
Reasonので + Consequence clause
The future tense Takuya Mochizuki.
Chapter 4 Quiz #2 Verbs Particles を、に、で
定期考査2 英語.
Who Is Ready to Survive the Next Big Earthquake?
Did he/she just say that? Get your head out of the gutter! Oh wait….
VTA 02 What do you do on a weekend? しゅうまつ、何をしますか。
Air Pen -- an introduction of my recent result --
ストップウォッチの カード ストップウォッチの カード
Starter: Write the following dates in Mandarin
P4-21 ネットワーク上の経路に対する 回帰問題について
て みる.
Session 8: How can you present your research?
Causative Verbs Extensively borrowed from Rubin, J “Gone Fishin’”, Power Japanese (1992: Kodansha:Tokyo) Created by K McMahon.
タンパク質相互作用の コンピュータによる予測と解析
-Get test signed and make corrections
Traits 形質.
くれます To give (someone gives something to me or my family) くれました くれます
Term paper, Report (1st, first)
My Favorite Movie.
Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus
豊田正史(Masashi Toyoda) 福地健太郎(Kentarou Fukuchi)
けいご 敬語 Polite speech.
Question Words….
ておく.
クイズやゲーム形式で紹介した実例です。いずれも過去のインターン作です。
いくらですか?.
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
Term paper, report (2nd, final)
Genetic Statistics Lectures (4) Evaluation of a region with SNPs
Tag question Aoyama Shogo.
ー生命倫理の授業を通して生徒の意識に何が生じたかー
The difference between adjectives and adverbs
英語音声学(7) 音連結.
Cluster EG Face To Face meeting
せつぞくし 接続詞 Conjunctions.
Grammar Point 2: Describing the locations of objects
あいさつ.
Indirect Speech 間接話法 Kaho.I.
Improving Strategic Play in Shogi by Using Move Sequence Trees
Presentation transcript:

Introduction to Bioinformatics for Medical Application 14 / June / 2007 Hiroyuki Hamada Laboratory for Bioinformatics Hello everybody. My name is Hiroyuki Hamada. I am research assistant of laboratory for bioinformatics. My English is not good enough yet. Please take it easy on me. Well, Prof. Okamoto, he is my boss, Prof. Okamoto is responsible for teaching this lecture. However, he is going to business trip, today. So, I am substitute instructor. If you have any question in this lecture, I would like you to ask Prof. Okamoto the question in his lecture. I hope your kindly cooperation. OK, today, I am talking about Introduction to Bioinformatics for Medical Application. Do you know this term “Bioinformatics”?

生物情報学による 医学・工学への アプローチ (我々の研究戦略) 観測データの収集 遺伝子発現量の時系列データ タンパク質合成量の時系列データ 時系列 遺伝子など 測定値 0.0 1.0 表現型(疾患レベルなど) 遺伝子・タンパク質の おおよその機能分類 相互作用の推定 陽性 陰性 gene1 gene2 gene3 gene4 gene5 gene9 gene7 gene11 gene15 判別器 ブーリアンネットワーク ベイジアンネットワーク クラスタリング解析 遺伝的アルゴリズム 遺伝的プログラミング (システム同定) 処方設計 薬剤開発 生物情報学による 医学・工学への アプローチ (我々の研究戦略) 高収率な代謝生産物生産のための 代謝制御系のシステム設計 シミュレーション システムの安定性解析 システムの感度解析 支配因子の同定

遺伝子発現データ DNA microarray 実験 遺伝子発現量の経時変化データ Time series graph Time 1 Gene# Expression 0.0 1.0 Time 1 Time 2 Well, in Next session, I would like to show the analysis for biological and medical data with using bioinformatics. Firstly, we have to perform the DNA microaray experiments and collect the time course data of gene expression. Time series of gene expression is illustrated on three dimensional graph. Time 3 Time series graph

クラスタリング解析 次元圧縮 標準と標本の比較 階層型クラスタリング クリスプクラスタリング 機能グループの分類 遺伝子間相互作用因子の分類 標準体と変異体の分類 Time Gene# Expression 0.0 1.0 Time Expression 0.0 1.0 This three dimensional graph compress to two dimensional graph with employing clustering analysis. So, we find the functional groups based on the expression pattern. Moreover, if we compare member of each cluster on the samples with member of control, we find the gene interactions and mutations. In the Bioinformatics for medical application, we often adopt whether Hierarchical clustering or k-means clustering. 階層型クラスタリング クリスプクラスタリング

クラスタリング法  階層型クラスタリング: ツリー構造 ► Each gene is a leaf on the tree ► Distances reflect similarity of expression ► Internal nodes represent functional groups  クリスプクラスタリング: k-平均クラスタリング ► Number k is chosen in advance ► Each group represents similar expression time Hierarchical clustering generates a tree Each gene means a leaf on the tree Distances reflect similarity of gene expression time. Internal nodes represent functional groups. Therefore Hierarchical clustering sorts the gene with expression time, and forms each cluster with arbitrary threshold as shown in this figure. On the other hand, k-means clustering generates k groups. before starting the analysis, Number k is chosen based on biological findings. Each group represents similar expression. This figure shows the concept of k-means clustering. In the k-means clustering, number of dimension is as same as number of sampling time. If we have two samples dependent on time, two dimensional graph is adopted as shown in this figure. Centroids is optimized as all data include any clusters. Therefore, I think k-means clustering is available for analysis of time course data of gene expression than Hierarchical clustering, Because k-means clustering can taka expressions value into account. Expression@A Expression@B

クラスタリングの結果  Causes of similar expression between genes are identified as follows: ► One gene controls the other in a pathway ► Both genes are controlled by another ► Both genes related to same time in cell cycle ► Both genes have similar function Then, What does expression correlations mean? Causes of similar expression between genes are identified as follows: One gene controls the other in a pathway. Both genes are controlled by another. Both genes related to same time in cell cycle. Both genes have similar function. Therefore, we should validate and verify the member of each cluster in order to find the functional disorder of gene on the disease. If genes related to disease are identified, we need to clarify the interactions between clusters, perhaps between members in same cluster.

システム同定 数理モデルの構築 クラスタ間の相互作用を推定 S-System Genetic programming 標準との比較により 機能不全のクラスタや遺伝子を同定 Time Expression 0.0 1.0 1 2 3 4 5 6 7 8 9 n Clarification of interactions between genes or clusters are called system identification. In system identification, we need to structure the mathematical model. The mathematical model have to represent the time course data of this expression. Mathematical model is design with employing S-system or Genetic programming. Prof Okamoto will explain the S-System and Genetic programming in his lecture, so, today I don’t explain these techniques at detail. S-System and genetic programming are one of the methodologies, and define a mechanism of system with using ordinary differential equation. If we structured the mathematical model, we can infer the interactions between genes or clusters from this time course data. Then, we find the functional disorder clusters or genes by comparing with control. S-System Genetic programming クラスタ間の相互作用を再現する 数理モデルの構築

システム解析 支配因子の同定 ボトルネック経路の同定 数値シミュレーション 統計解析 処方構築 創薬 判別器 2 3 4 5 6 7 8 9  処方構築   創薬  1 2 3 4 5 6 7 8 9 n gene4 gene3 If we structured a mathematical model of system of interest, the mathematical mode can realize the time course data. Then we can perform the computer simulation under the arbitral condition with employing the mathematical model. Everyone knows, computer simulations are available for design of prescription, identification of bottle-neck pathway, discovery of genetic therapy etc. If we find the dominant genes, we can develop the discriminant machine with applying statistical analysis as shown in this figure. These analysis are called system analysis. Clustering analysis, system identification, system analysis are indispensable for advances in medical sciences. These techniques are introduced from bioinformatics in order to solve the problem in medical sciences. Negative gene2 gene15 gene5 gene1 数値シミュレーション 統計解析 gene11 gene5 Positive gene7 gene9  判別器 

まとめ GenBank OMIM BLAST PubMed Ok, I am talking about Introduction to bioinformatics for medical application without using mathematical techniques. I would like you to understand the concept of bioinformatics for medical application in this lecture. In bioinformatics for medical application, Firstly, we collect the experimentally biological data, next perform the clustering analysis to find the functional groups, Then, identify the mechanism of system, Finaly, try to explore the valuable information on medical sciences with using system analysis. Everywhere, every time, we can integrated these techniques with PubMed, OMIM, GenBank and BLAST. This slide shows the concept of bioinformatics for medical application very well. I wonder if you understand the concept of bioinformatics for medical application.