Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus

Slides:



Advertisements
Similar presentations
ベイズの定理と ベイズ統計学 東京工業大学大学院 社会理工学研究科 前川眞一. 2 Coffe or Tea 珈琲と紅茶のどちらが好きかと聞いた場合、 Star Trek のファンの 60% が紅茶を好む。 Star Wars のファンの 95% が珈琲を好む。 ある人が紅茶を好むと分かったとき、その人が.
Advertisements

だい六か – クリスマスとお正月 ぶんぽう. て form review ► Group 1 Verbs ► Have two or more ひらがな in the verb stem AND ► The final sound of the verb stem is from the い row.
Humble and Honorific Language By: Word-Master Leo, Mixer of Ill Beats.
て -form - Making て -form from ます -form -. With て -form, You can say... ~てもいいですか? (= May I do…) ~てください。 (= Please do…) ~ています。 (= am/is/are doing…) Connecting.
一階述語論理 (first-order predicate logic) 一階述語論理入門 構文論(論理式の文 法) 意味論(論理式の解 釈) 認知システム論 知識と推論(4) 知識と論理でを組み合わせて問題を解決する.
Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
VE 01 え form What is え form? え? You can do that many things with え form?
英語特別講座 疑問文 #1    英語特別講座 2011 疑問文.
The Bar バー.
英語勉強会.
日本語... ジェパディー! This is a template for you to use in your classroom.
Verb てform + から、 After.
と.
2010年7月9日 統計数理研究所 オープンハウス 確率モデル推定パラメータ値を用いた市場木材価格の期間構造変化の探求 Searching for Structural Change in Market-Based Log Price with Regard to the Estimated Parameters.
Location nouns.
What did you do, mate? Plain-Past
プログラムの正当性(2) 正当性証明の基本原理
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
How to quote what someone says or said
Ch13-1 TB250 てフォーム.
Let’s discuss in English! What are your opinions? Let’s discuss it!
Model Checking (2) Temporal Logic
How do you talk about Positions/ Locations?
A, An & The Exercises.
V 03 I do NOT eat sushi. I do NOT do sumo.
A 02 I like sushi! I like origami!
にほんご JPN101 Sep. 23, 2009 (Wednesday).
十年生の 日本語 Year 10 Writing Portfolio
L1. Introduction of AI course
Reasonので + Consequence clause
Chapter 4 Quiz #2 Verbs Particles を、に、で
Provisioning on Multiple Network(NIC) env
定期考査2 英語.
The Sacred Deer of 奈良(なら)
Who Is Ready to Survive the Next Big Earthquake?
“You Should Go To Kyoto”
know / knows(s) / ___________
Nihongo Japanese 日本ご ‘Numbers ’ & ‘Hiragana Revision’
Air Pen -- an introduction of my recent result --
ストップウォッチの カード ストップウォッチの カード
Topics on Japan これらは、過去のインターンが作成したパワポの写真です。毎回、同じような題材が多いため、皆さんの出身地等、ここにない題材も取り上げるようにしてください。
ロジスティクス工学 第7章 配送計画モデル 東京商船大学 久保 幹雄
National adviser Japanese Yuriko Kayamoto
Causative Verbs Extensively borrowed from Rubin, J “Gone Fishin’”, Power Japanese (1992: Kodansha:Tokyo) Created by K McMahon.
HHIHi.
Windows Azure 通知ハブ.
suppose to be expected to be should be
Let’s order at a restaurant.
-Get test signed and make corrections
Model Checking (2) Temporal Logic
WELCOME TO THE WORLD OF DRAGON BALL
How to become Santa Claus
大規模なこと Large scale.
Question Words….
クイズやゲーム形式で紹介した実例です。いずれも過去のインターン作です。
論理と推論 命題論理 推論 命題論理体系の健全性と完全性 構文と意味 → 同値関係と標準形(節形式) 決定問題と意味木 推論規則
プログラムの正当性(2) 正当性証明の基本原理
ロールプレイアクティビティ ある状況設定の中で、登場人物になりきり会話をします。 CAN-DO: 状況に応じた適切な質問をすることができる。
Genetic Statistics Lectures (4) Evaluation of a region with SNPs
知能ソフトウェア特論 Intelligent Software
知能ソフトウェア特論 Intelligent Software
ー生命倫理の授業を通して生徒の意識に何が生じたかー
Created by L. Whittingham
論理的に推論 L4. Reasoning Logically Knowledge Representation (知識表現)
論理的に推論 L4. Reasoning Logically Knowledge Representation (知識表現)
MO装置開発 Core part of RTR-MOI Photograph of core part.
Visualizing Japanese Grammar Appendix
Cluster EG Face To Face meeting
Grammar Point 2: Describing the locations of objects
Improving Strategic Play in Shogi by Using Move Sequence Trees
Presentation transcript:

Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus 鬼はどこですか? Propositional logic (cont…)    命題論理 Reasoning where is wumpus  鬼がいる場所を推理する

limination introduction negation resolution complex atomic conjunction disjunction time-dependent

elimination 削除 introduction 導入 negation 否定 resolution 解決 atomic 原子の referent 指示物 conjunction 連結 disjunction 分離 dependent 従属関係の

命題論理: 意味論 論理積 A∧B AかつB 論理和 A∨B AまたはB 否定 ¬A Aでない 含意 A⇒B AならばBを意味する 同等 A⇔B (AならばB)かつ(BならばA) S1 S2 S1 S2 S1 is true, then S2 is true. S1 is false, then S2 is either true or false S1 is true, then S2 is true. S1 is false, then S2 is false S1 S2 S1  S2 white  false white  false

then B is either true or false This relation between sentences is called entailment. A |= B This relation between sentences is called implication. A  B AならばB」(A→B)は、Aが真ならばBが真のときだけ真、Aが偽ならばBの真偽にかかわらず真となります。 A is true, then B is true. A is false, then B is either true or false

課題:真偽値の計算 p = T, q = F, r = Tのとき (p  q)  r p = T, q = F, r = Fのとき p = F, q = F, r = Tのとき (p  q)  r p = F, q = F, r = Fのとき (p  q)  r  これは論理式の意味(真偽値)の計算例である.

Seven inference rules for propositional Logic Modus Ponens And-Elimination And-Introduction Or-Introduction Double-Negation Elimination Unit Resolution Logic connectives:    ,  i 1  2 … n 1  2 … n 1, 2, …, n 1  2  …  n i        ,   (α または β , not β ) → α    ,     (α または β , not β または γ ) →  α または γ である   

The knowledge base p p A p Percept sentences: there is no smell in the square [1,1]  S1,1 there is no breeze in the square [1,1]  B1,1 there is no smell in the square [2,1]  S2,1 there is breeze in the square [2,1]   B2,1 there is smell in the square [1,2]  S1,2 there is no breeze in the square [1,2]  B1,2 s s b b p w g p A p

The knowledge base p p A p knowledge sentences: w g If a square has no smell, then neither the square nor any of its adjacent squares can house a wumpus. R1: S1,1  W1,1  W1,2  W2,1 R2: S2,1  W1,1  W2,1  W2,2  W3,1 If there is smell in [1,2], then there must be a wumpus in [1,2] or in one or more of the neighboring squares. R3: S1,2  W1,3  W1,2  W2,2  W1,1 If a square has no breeze, then neither the square nor any of its adjacent squares can have a pit. R4: B1,1  P1,1  P1,2  P2,1 R5: B1,2  P1,1  P1,2 P2,2  P1,3 If there is breeze in [2,1], then there must be a pit in [2,1] or in one or more of the neighboring squares. R6: B2,1  P3,1  P2,1  P2,2  P1,1 s s b b p w g p A p

Inferring knowledge using propositional logic Concerning with the 6 squares, [1,1], [2,1], [1,2], [3,1], [2,2], [1,3], there are 12 symbols, S1,1, S2,1, S1,2, B1,1, B2,1, B1,2, W1,1, W1,2, W2,1, W2,2, W3,1, W1,3 The process of finding a wumpus in [1,3] as follows: 1. Apply R1 to S1,1, we obtain W1,1  W1,2  W2,1 2. Apply And-Elimination, we obtain W1,1 W1,2 W2,1 3. Apply R2 and And-Elimination to S2,1, we obtain W1,1  W2,2 W2,1 W3,1 4. Apply R3 and the unit resolution to S1,2, we obtain ( is W1,3W1,2 W2,2 and  is W1,1 ) W1,3  W1,2  W2,2 5. Apply the unit resolution again, we obtain ( is W1,3 W1,2 and  is W2,2 ) W1,3  W1,2 6. Apply the unit resolution again, we obtain ( is W1,3 and  is W1,2 ) W1,3 Here is the answer: the wumpus is in [1,3], that is, W1,3 is true. i 1  2 … n    ,   R4: S1,2  W1,3  W1,2  W2,2  W1,1 s s b b p w g p A p

Problem with propositional logic Too many propositions  too many rules to define a competent agent The world is changing, propositions are changing with time.  do not know how many time-dependent propositions we will need have to go back and rewrite time-dependent version of each rule. The problem with proposition logic is that it only has one representational device: the proposition!!! The solutions to the problem is to introduce other logic first-order logic That can represent objects and relations between objects in addition to propositions.