東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)

Slides:



Advertisements
Similar presentations
『わかりやすいパターン認 識』 第 5 章 特徴の評価とベイズ誤り確率 5.4 ベイズ誤り確率と最近傍決定則 発表日: 5 月 23 日(金) 発表者:時田 陽一.
Advertisements

Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
数理統計学(第ニ回) 期待値と分散 浜田知久馬 数理統計学第2回.
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
疫学概論 二項分布 Lesson 9.頻度と分布 §B. 二項分布 S.Harano,MD,PhD,MPH.
数理統計学(第四回) 分散の性質と重要な法則
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計学 11/13(月) 担当:鈴木智也.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
11.確率モデル 確率・・・不確実性の経済学や金融やファイナンス で重要 密度関数がある場合に期待値を取る計算を中心に、紹介.
上坂吉則 尾関和彦 文一総合出版 宮崎大輔2003年6月28日(土)
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
統計学 11/19(月) 担当:鈴木智也.
第7回 二項分布(続き)、幾何分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
「データ学習アルゴリズム」 第2章 学習と統計的推測 報告者 佐々木 稔 2003年5月21日 2.1 データと学習
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計学 11/08(木) 鈴木智也.
統計数理 石川顕一 10/17 組み合わせと確率 10/24 確率変数と確率分布 10/31 代表的な確率分布
電気・通信・電子・情報工学実験D 確率的情報処理の基礎技術 Practice (2014年4月)
電気・通信・電子・情報工学実験D 確率的情報処理の基礎 第1部講義(2009年4月)
ガウス過程による回帰 Gaussian Process Regression GPR
第3回 確率変数の平均 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
電気・通信・電子・情報工学実験D 確率的情報処理の基礎技術 Practice (2012年4月)
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
確率・統計Ⅰ 第3回 確率変数の独立性 / 確率変数の平均 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
第9章 混合モデルとEM 修士2年 北川直樹.
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
正規分布確率密度関数.
電気・通信・電子・情報工学実験D 確率的情報処理の基礎 第1部講義(2008年4月15日,4月22日,5月6日)
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
混合ガウスモデルによる回帰分析および 逆解析 Gaussian Mixture Regression GMR
確率論の基礎 「ロジスティクス工学」 第3章 鞭効果 第4章 確率的在庫モデル 補助資料
確率伝搬法と量子系の平均場理論 田中和之 東北大学大学院情報科学研究科
Basic Tools B4  八田 直樹.
第2日目第1時限の学習目標 順列、組み合わせ、確率の入門的知識を学ぶ。 (1)順列とは? (2)組み合わせとは? (3)確率とは?
電気・通信・電子・情報工学実験D 確率的情報処理の基礎技術 Part 2(2014年4月)
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
電気・通信・電子・情報工学実験D 確率的情報処理の基礎技術 Practice (2013年4月)
電気・通信・電子・情報工学実験D 確率的情報処理の基礎 第1部講義(2007年4月16日,4月17日,4月24日,5月10日)
量子系における 確率推論の平均場理論 田中和之 東北大学大学院情報科学研究科
電気・通信・電子・情報工学実験D 確率的情報処理の基礎 第1部講義(2006年4月17日,4月18日,4月25日,5月9日)
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
電気・通信・電子・情報工学実験D 確率的情報処理の基礎技術 Practice (2015年4月)
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
「データ学習アルゴリズム」 第3章 複雑な学習モデル 報告者 佐々木 稔 2003年6月25日 3.1 関数近似モデル
第3章 線形回帰モデル 修士1年 山田 孝太郎.
ベイズ最適化 Bayesian Optimization BO
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
最尤推定・最尤法 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
藤本翔太1, 狩野裕1, Muni.S.Srivastava2 1大阪大学基礎工学研究科
ガウス分布における ベーテ近似の理論解析 東京工業大学総合理工学研究科 知能システム科学専攻 渡辺研究室    西山 悠, 渡辺澄夫.
物理フラクチュオマティクス論 応用確率過程論 (2006年4月11日)
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
ランダムプロジェクションを用いた音響モデルの線形変換
電気・通信・電子・情報工学実験D 確率的情報処理の基礎技術 Practice (2019年4月)
混合ガウスモデル Gaussian Mixture Model GMM
Presentation transcript:

東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka) 物理フラクチュオマティクス論 Physical Fluctuomatics 第3回 確率変数,確率分布,確率密度関数 3rd Random variable, probability distribution and probability density function 東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka) kazu@smapip.is.tohoku.ac.jp http://www.smapip.is.tohoku.ac.jp/~kazu/ 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 確率の基礎知識 事象と確率 結合確率と条件付き確率 ベイズの公式と事前確率,事後確率 離散確率変数と確率分布 連続確率変数と確率密度関数 期待値,分散,共分散 一様分布 ガウス分布 前回 今回 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 確率と確率変数 各事象に番号を割り当て,その番号に対する変数を導入する.この変数を確率変数 (Random Variable)という. 「奇数の目がでる」という事象に「X=1」という等式を対応させることができる. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 確率と確率変数 標本空間から構成されたすべての事象 A に実数値 X(A) を1対1対応させる写像を考える.この写像 X(A) を事象 A の確率変数 (Random Variable) という.通常, 確率変数 X(A) は A を省略し,単に X と表される. 確率変数 X が実数値 x をとる事象 X=x の確率を Pr{X=x} と表す.このとき x をその確率変数の実現値または状態 (State)という.起こりうる状態の集合を状態空間 (State Space)という. 2つの事象X=x および X=x’ が互いに排反であるとき状態 x と状態 x’ は互いに排反であるという. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数と連続確率変数 離散確率変数 (Discrete Random Variable):      離散的な状態空間をもつ確率変数           例:{x1,x2,…,xM} 連続確率変数 (Continuous Random Variable):      連続的な状態空間をもつ確率変数           例:(−∞,+∞) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数と確率分布 標本空間Ωが互いに排反である M 個の事象 A1,A2,…,AM によって Ω=A1∪A2∪…∪AM と表され,確率変数 X がM 個の状態 x1,x2,…,xM を用いて1対1対応の写像 X(Ai)=xi (i=1,2,…,M) により定義されるとき すべて事象 X=x1, X=x2,…, X=xM の起こる確率 が変数 x の関数 P(x) を用いて 確率変数 状態変数 状態 と表されるとき, P(x) を確率変数 X の確率分布 (Probability Distribution) ,x を状態変数 (State Variable) という. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の確率分布の性質 いずれも確率の公理1,2,3から導かれる. 規格化条件(Normalization Condition) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の期待値と分散 確率変数 X の期待値 (Expected Value,平均: Average)μ 確率変数 X の分散 (Variance) σ2 σ:標準偏差 (Standard Deviation) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の結合確率分布 2種類の確率変数 X, Y に対して,事象 X=x と事象 Y=y 結合事象 (X=x)∩(Y=y)の起こる確率 Pr{(X=x)∩(Y=y)}= Pr{X=x,Y=y} が関数 P(x,y) を用いて と表されるとき, P(x,y) を確率変数 X と Y の結合確率分布 (Joint Probability Distribution) という. 確率ベクトル変数 状態ベクトル変数 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の周辺確率分布 標本空間Ωが互いに排反である M 個の事象 A1,A2,…,AM によって Ω=A1∪A2∪…∪AM と表され,離散確率変数 X がM 個の実数値 x1,x2,…,xM を用いて1対1対応の写像 X(Ai)=xi (i=1,2,…,M) により定義されるとき 確率変数 Y の 周辺確率分布 (Marginal Probability Distribution) 簡略表記 状態空間における互いに排反な取り得るすべての状態 x についての和 規格化条件 (Normalization Condition) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の周辺確率分布 より高次元への拡張 確率変数 Y の周辺確率分布 (Marginal Probability Distribution) X Y Z U 周辺化 (Marginalize) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の独立性 確率変数 X と Y が互いに独立である: 確率変数 Y の確率分布 確率変数 X と Y の結合確率分布 確率変数 X の確率分布 確率変数 Y の周辺確率分布 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の共分散 確率変数 X と Y の共分散 (Covariance) 共分散行列 (Covariance Matrix) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の確率分布の例 a E[X] 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の結合確率分布の例 a Cov[X,Y] 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 離散確率変数の条件付き確率分布の例 2元対称通信路の 条件付き確率分布 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 連続確率変数の確率 確率変数 X の状態空間 (−∞,+∞) において状態 x が区間 (a,b) にある確率 確率変数 X の分布関数(Distribution Function) 確率変数 X の確率密度関数 (Probability Density Function) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 連続確率変数の確率密度関数の性質 規格化条件(Normalization Condition) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 連続確率変数の期待値と分散 確率変数 X の期待値 (平均) 確率変数 X の分散 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 連続確率変数の結合確率密度関数 確率変数 X と Y の状態空間 (−∞,+∞) において状態 x と y が区間 (a,b)×(c,d) にある確率 結合確率密度関数 (Joint Probability Density Function) 規格化条件 (Normalization Condition) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 連続確率変数の周辺確率密度関数 確率変数 Y の 周辺確率密度関数 (Marginal Probability Density Function) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 連続確率変数の独立性 確率変数 X と Y が互いに独立である: 確率変数 Y の確率密度関数 確率変数 X と Y の 結合確率密度関数 確率変数 X の確率密度関数 確率変数 Y の 周辺確率密度関数 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 連続確率変数の共分散 確率変数 X と Y の共分散 (Covariance) 共分散行列 (Covariance Matrix) 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 一様分布 U(a,b) 一様分布 (Uniform Distribution) の確率密度関数 p(x) x a b (b-a)-1 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) ガウス分布(正規分布) N(μ,σ2) 平均μ,分散σ2 のガウス分布 (Gaussian Distribution) の確率密度関数 p(x) μ x 平均と分散はガウス積分の公式 (Gaussian Integral Formula) から導かれる 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 多次元ガウス分布 行列 C を正定値の実対称行列として,2次元ガウス分布 (Two-Dimensional Gaussian Distribution) の確率密度関数 において行列 C が共分散行列になる. d 次元ガウス積分の公式から導かれる 一般の次元への拡張も同様 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 大数の法則 X1,X2,...,Xn は平均 m, 分散 s2 の互いに独立な同一の確率変数であるとき 中心極限定理 X1,X2,...,Xn は平均 m, 分散 s2 の互いに独立な同一の確率変数であるとき は n が大きいとき平均 m, 分散 s2/n の正規分布に従う. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 確率の基礎知識 事象と確率 結合確率と条件付き確率 ベイズの公式と事前確率,事後確率 離散確率変数と確率分布 連続確率変数と確率密度関数 期待値,分散,共分散 一様分布 ガウス分布 前回 今回 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-1 確率変数 X が ±1 の2値のみをとるものとして事象 X が状態 x をとるという事象 X=x の確率分布が により与えられるとき期待値 E[X] と分散 V[X] の表式を導出し,その についての値を C 言語,Java またはMatLab を用いて計算し,グラフを書け. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-2 確率変数 X と Y がいずれも ±1 の2値のみをとるものとして事象 X が状態 x をとり,かつ事象 Y が状態 y をとるという事象 (X=x)∩(Y=y) の確率分布 P(x,y) が により与えられるとき確率変数 X についての周辺確率 P(X) と共分散 Cov[X,Y] の表式を導出せよ. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-3 確率変数 X と Y がいずれも ±1 の2値のみをとるものとして事象 Y が状態 y をとるという条件のもとでの事象 X が状態 x をとるという事象 X=x の条件付き確率分布が 次の表式でも与えられることを示せ. ヒント:次の等式を用いる. cosh(c) は任意の実数 c に対して偶関数 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-4 ガウス積分の公式を証明せよ. ヒント 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-5 確率変数 X が任意の実数 X をとる連続確率変数であり,その確率密度関数が で与えられるとき,平均 E[X] と分散 V[X] が次の表式で与えられることをガウス積分の公式を用いて証明せよ.またμ=0, σ=10, 20, 40 のときの p(x) の x に対する値を C 言語, Java または MatLabで計算し,グラフを書け. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-6 一様分布 U(0,1) に従う乱数(一様乱数)を発生するプログラムを作成せよ.乱数を N 個発生させた場合のヒストグラムを N=10, 20, 50, 100, 1000 のそれぞれの場合について書け. C 言語では rand() は0,1,2,…,randmax のなかのいずれかの値をランダムに生成される命令である.randmax の値は rand() の出力の最大値であり,システムによって異なる場合があるので注意. 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-7 平均 μ,分散 σ2 のガウス分布 N(μ,σ2) に従う乱数(ガウス乱数)を発生するプログラムを作成せよ.乱数を N 個発生させた場合のヒストグラムを N=10, 20, 50, 100, 1000 のそれぞれの場合について書け. ヒント: 任意の確率分布に従って生成された n 個の乱数 x1,x2,…,xn に対して (x1+x2+…+xn )/n はn→+∞ で平均 μ,分散 σ2 のガウス分布 N(μ,σ2/n) に従う[中心極限定理より] 区間 [0,1] の一様分布 U[0,1] に従う乱数を12個 x1,x2,…,x12 発生させる. 平均 0, 分散 1 のガウス乱数 σξ+μが平均 μ, 分散 σ2 のガウス乱数 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題3-8 任意の自然数 d に対して d 行 d 列の正定値の実対称行列 C に対して次の d 次元ガウス積分の公式を証明せよ. ヒント: 行列 C の固有値 λi に対応する固有ベクトル (i=1,2,…,d) とすると行列 C は次のように対角化される 2008/4/24 物理フラクチュオマティクス論(東北大学)

物理フラクチュオマティクス論(東北大学) 演習問題 3-9 確率ベクトル変数 の各成分がいずれも任意の実数 をとる連続確率変数であり,正定値の実対称行列 C に対してその確率密度関数が により与えられるとき,その平均ベクトルが ,共分散行列 が C となることを示せ. 2008/4/24 物理フラクチュオマティクス論(東北大学)