Study of the ISM and CRs of MBM 53,54,55 Clouds and the Pegasus Loop

Slides:



Advertisements
Similar presentations
Localized hole on Carbon acceptors in an n-type doped quantum wire. Toshiyuki Ihara ’05 11/29 For Akiyama Group members 11/29 this second version (latest)
Advertisements

だい六か – クリスマスとお正月 ぶんぽう. て form review ► Group 1 Verbs ► Have two or more ひらがな in the verb stem AND ► The final sound of the verb stem is from the い row.
第 5 章 2 次元モデル Chapter 5 2-dimensional model. Contents 1.2 次元モデル 2-dimensional model 2. 弱形式 Weak form 3.FEM 近似 FEM approximation 4. まとめ Summary.
Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
BCD : Physics Options  e , e - e -, GigaZ, fixed target T. Omori 2005 年 12 月 20 日 BCD
太陽フレア中性子の生成過程 ( ≅ ガンマ線 (π 0 ) の生成過程 ≅ 高エネルギーイオンの寿命 ) さこ隆志(名大 STE 研) 基本的に R.J.Murphy, et al., ApJ Suppl,, 168, , 2007 の前半部分の review をします 1 太陽ガンマ線ミニ研究会@名古屋大.
SS2-15:A Study on Image Recognition and Understanding
極紫外撮像分光装置 (EIS) 国立天文台 渡 邊 鉄 哉
第1回レポートの課題 6月15日出題 今回の課題は1問のみ 第2回レポートと併せて本科目の単位を認定 第2回は7月に出題予定
Chapter 11 Queues 行列.
SWCX : 0.25keV ROSATマップのどのあたりがSWCXか?
ALMA による原始惑星系円盤の観測シミュレーション
Chris Burgess (1号館1308研究室、内線164)
What did you do, mate? Plain-Past
論文紹介06: 最近のγ線観測とGLASTとの関連
X線偏光観測最前線 December 01, 2007 Tsunefumi Mizuno Hiroshima University
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
Noun の 間(に) + Adjective Verb てform + いる間(に) during/while.
SP0 check.
Report from Tsukuba Group (From Galaxies to LSS)
Tohoku University Kyo Tsukada
Shell model study of p-shell X hypernuclei (12XBe)
Reasonので + Consequence clause
Fermi衛星による 最新成果と今後の展望
The Sacred Deer of 奈良(なら)
“You Should Go To Kyoto”
電離領域の遠赤外輻射 (物理的取り扱い)      Hiroyuki Hirashita    (Nagoya University, Japan)
Students’ reactions to Japanese and foreign teachers’ use of L1/L2
2018/11/19 The Recent Results of (Pseudo-)Scalar Mesons/Glueballs at BES2 XU Guofa J/ Group IHEP,Beijing 2018/11/19 《全国第七届高能物理年会》 《全国第七届高能物理年会》
Primordial Origin of Magnetic Fields in the Galaxy & Galaxies - Tight Link between GC and Cosmic B –  Y. Sofue1, M. Machida2, T. Kudoh3 (1. Kagoshima.
Subaru Ground-Layer AO Simulation
Session 8: How can you present your research?
Virgo Survey: Single Peak Galaxies
Causative Verbs Extensively borrowed from Rubin, J “Gone Fishin’”, Power Japanese (1992: Kodansha:Tokyo) Created by K McMahon.
Photometric properties of Lyα emitters at z = 4
21世紀 COE 出張報告会  宇宙物理学教室 D1 成本 拓朗.
Astro-E2 Ascent Profile
Virgo CO Survey of Molecular Nuclei Yoshiaki Sofue Dept. Phys
全国粒子物理会 桂林 2019/1/14 Implications of the scalar meson structure from B SP decays within PQCD approach Yuelong Shen IHEP, CAS In collaboration with.
SFN 282 No 担当 内山.
My Favorite Movie I will introduce my favorite movie.
村岡和幸 (大阪府立大学) & ASTE 近傍銀河 プロジェクトチーム
Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus
第24回応用言語学講座公開連続講演会 後援:国際言語文化研究科教育研究プロジェクト経費
G. Hanson et al. Phys. Rev. Lett. 35 (1975) 1609
2019年4月8日星期一 I. EPL 84, (2008) 2019年4月8日星期一.
フレアの非熱的成分とサイズ依存性    D1 政田洋平      速報@太陽雑誌会(10/24).
FermiによるGRB観測を受けて CTAに期待すること
Satoshi Kawashima, LLD 川島 聡 University of Tokyo
References and Discussion
著者:久世宏明. 著者:久世宏明 著者:久世宏明 著者:久世宏明 著者:久世宏明 著者:久世宏明.
22 物理パラメータに陽に依存する補償器を用いた低剛性二慣性系の速度制御実験 高山誠 指導教員 小林泰秀
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
第1回レポートの課題 6月24日出題 今回の課題は1問のみ 第2回レポートと併せて本科目の単位を認定 第2回は7月に出題予定
シミュレーションサマースクール課題 降着円盤とジェット
北大MMCセミナー 第62回 附属社会創造数学センター主催 Date: 2016年11月4日(金) 16:30~18:00
星間物理学 講義1の図など資料: 空間スケールを把握する。 太陽系近傍から 銀河系全体への概観、 観測事実に基づいて太陽系の周りの様子、銀河系全体の様子を概観する。それぞれの観測事実についての理解はこれ以降の講義で深める。 2010/10/05.
宇宙粒子線直接観測の新展開 柴田 徹 青学大理工 日本物理学会高知(22/Sep./2013).
ー生命倫理の授業を通して生徒の意識に何が生じたかー
The Facilitative Cues in Learning Complex Recursive Structures
MO装置開発 Core part of RTR-MOI Photograph of core part.
非等方格子上での クォーク作用の非摂動繰り込み
Cluster EG Face To Face meeting
September 25, meeting Tsunefumi Mizuno (Hiroshima Univ.)
September 25, meeting Tsunefumi Mizuno (Hiroshima Univ.)
銀河中心鉄輝線(6.4/6.7 keV Line)の起源
Preflare Features in Radios and in Hard X-Rays
Apply sound transmission to soundproofing
原始星からのX線発見と課題 (r-Ophの)T-Tauri星からX線放射とフレアーの発見
Improving Strategic Play in Shogi by Using Move Sequence Trees
Presentation transcript:

Study of the ISM and CRs of MBM 53,54,55 Clouds and the Pegasus Loop Sep. 14th, 2016@ASJ meeting in Ehime Tsunefumi Mizuno (Hiroshima Univ.) S. Abdollahi, Y. Fukui, K. Hayashi, A. Okumura, H. Tajima, and H. Yamamoto on behalf of the Fermi-LAT Collaboration 高銀緯分子雲領域のガンマ線観測を紹介 星間ガス特に”dark gas”について議論

Fermi衛星LAT検出器によるMBM 53,54,55およびPegasus Loop領域の観測 2016年9月14日@日本天文学会秋季年会(愛媛大学) 水野恒史 (広島大学宇宙科学センター) S. Abdollahi, 福井康雄, 林克洋、奥村曉、田島宏康、山本宏昭 on behalf of the Fermi-LAT Collaboration (日本語のタイトル)

All-Sky Map in g Rays Interstellar Medium (ISM) plays an important role in physical processes in the Milky Way Diffuse GeV g rays are a powerful probe to study the ISM [tracer of the total gas column density, N(Htot)] Vela Geminga Galactic plane 星間ガス:星の材料。重要。 広がったガンマ線は全星間ガスの優れたトレーサー:  宇宙線強度が一定ならN(Htot)∝Igamma 全天ガンマ線マップ 銀河座標 銀河面が水平の帯 明るいガンマ線源:  銀河面のパルサー、パルサー星雲  系外の活動銀河核 広がったガンマ線放射が主成分。昔から星間ガスの研究に使われてきた Crab MBM 53,54,55 3C 454.3 Fermi-LAT 4 year all-sky map = point sources + diffuse g rays ~80% of g rays

Dark Gas Usually ISM gas has been traced by radio surveys (HI by 21 cm, H2 by 2.6 mm CO) Grenier+05 claimed considerable amount of “dark gas” surrounding nearby CO clouds cold HI or CO-dark H2? MDG? it is inferred from the distribution of dust, but what kind of dust property should we use? Grenier+05 通常はHI by 21cm、H2 by 2.6mm (CO) 電波サーベイでトレースしきれない”dark gas”の存在(dust, ガンマ線) Grenier+05の紹介 原子 or 分子?総量?=>我々が解くべき課題 通常はdustを用いるが「dustのどの物理量を用いるべきか」が不定性の要因 center@l=70deg E(B-V)excess (residual gas inferred by dust) and Wco “dark gas” inferred by g rays (EGRET)

MBM 53,54,55 & Pegasus Loop Nearby, high-latitude clouds suitable to study the ISM and cosmic rays (CRs) in the solar neighborhood (Welty+89, Kiss+04, Yamamoto+03,06) d ~ 150 and 100 pc for MBM 53-55 and Pegasus Loop, respectively most of HI in the region of interest (ROI) is local Planck dust temperature (Td) map Planck radiance (R) map converted in N(Htot) template map MBM53-55 & Pegasus Loopの詳細解析 高銀緯、近傍(HIの速度分布からも近傍と言える) Tdマップ Planck衛星のradiance(全放射強度)から適当に全柱密度を予想したマップ 低Td=高N(Htot)=MBM53-55&Pegasus Loop MBM 53-55 Pegasus Loop

WHI-Dust Relation (1) Dust is mixed with gas and has been used as a tracer of N(Htot) but what kind of quantity should we use? We examined correlations btw. WHI and two dust tracers [radiance (R) and opacity at 353 GHz (t353)] (see also Fukui+14,15, Planck Collab. 2014) two tracers show different, Td-dependent correlation with WHI (areas with Wco>1.1 K km/s masked) ここで「dustのどの物理量を用いるべきか?」を考える WHIとdustのトレーサー(radiance, t353)の比較 両者は温度依存性が大きく異なる radianceがN(Htot)のトレーサーになっていれば概ねWHIに比例(optically thin HI)。 T353がN(Htot)のトレーサーになっていればdark gasの寄与大 lines show best-fit linear relations in Td>21.5K

WHI-Dust Relation (2) Dust is mixed with gas and has been used as a tracer of N(Htot) but what kind of quantity should we use? We examined correlations btw. WHI and two dust tracers [radiance (R) and opacity at 353 GHz (t353)] (see also Fukui+14,15, Planck Collab. 2014) two tracers show different, Td-dependent correlation with WHI we tested two tracers against g-ray data. we also examined Td dependence and found that N(Htot,g)/R (or t353) depends on Td. => use g-ray data to compensate for the dependence N(Htot) template (∝ R) (1020 cm-2) N(Htot) template (∝ t353) (1020 cm-2) N(Htot)のテンプレート(∝R or t353)を作成しガンマ線との相関を見た  t353の方がコントラストが大きく、ガンマ線との相関から区別できる 細かい話は省略 ガンマ線から示唆されるN(Htot)はR, t353のどちらにも比例せず、gas-dust比はTd依存性を持つ ガンマ線をN(Htot)のロバストなトレーサーとして用い、温度依存性を補正 (two tracers show different contrast in N(Htot) template maps)

Td-Corrected Modeling We started with R-based N(Htot) map and employed an empirical function as below [modeling the increase of N(Htot) in areas with low Td] Then we scanned coefficient C which best represents g-ray data idea is to use g-ray data as a robust tracer of N(Htot) Tbk=20.5 K and C=2 [10% required increase in N(Htot) by 1K] gives best lnL ガンマ線をN(Htot)のロバストなトレーサーとして用い、温度依存性を補正 経験的な表式を用いる。RadianceベースのN(Htot)を出発点とし低温ほど柱密度を増やす 係数を変えてlikelihoodを評価 1Kで10%の増加がガンマ線に最もよくあう Preliminary

Discussion (ISM) Preliminary Preliminary Left: the correlation between WHI and the “corrected” N(Htot) map scatter due to dark gas (DG). Ts<100 K is inferred in optically thick HI scenario Right: Integral of gas column density (∝ Mgas) as a function of Td for N(Htot), N(HIthin), N(Htot)-N(HIthin)(~N(H) for dark gas) and 2N(H2,CO) MDG is ~25% of MHI,thin and <= 5 x MH2,CO (the factor of 5 is larger compared to those in other regions) MDG differs by a factor of >=4 if we use only R (or t353); the correction based on g ray data is crucial 左:最終的に得られた(NHtot)とWHIの関係 P6と比較。低温でN(Htot)が大きくなる。 Optically-thick HIのモデルカーブを重ね書き。Ts<100Kが示唆 右:Tdごとのガス密度の分布 N(Htot)黒実線, N(Hthin)黒点線, 両者の差(~dark gas)赤点線,H2 traced by CO青点線 M(DG)はM(H2,CO)の5倍程度。他領域に比べdark gas rich Rベースまたはt353ベースの予想にくらべM(DG)は4倍以上異なる=>ガンマ線による補正が本質 1022 cm-2 deg2 corresponds to ~740 Msun for d=150 pc Preliminary Preliminary

Thank you for your Attention Summary Diffuse GeV g rays are a powerful probe to study the ISM (and CRs) We present a joint Planck & Fermi-LAT study of MBM 53,54,55 clouds and the Pegasus Loop for the first time we found neither R nor t353 inferred from Planck observations were good representations of N(Htot) We propose to use g rays as a robust tracer of N(Htot), and obtained the ISM (and CR) properties moderate scatter in WHI-N(Htot) relation. Ts<100 K is inferred in optically-thick HI scenario MDG is ~25% of MHI,thin and <= 5 x MH2,CO [in terms of N(HDG)/N(H2,CO), the region is dark-gas-rich] (more details on ISM and CRs in the paper submitted) まとめ ガンマ線はISMの良いトレーサー MBM53-55 & Pegasus Loopの詳細解析  N(Htot)/DがTdに依存 ガンマ線による補正  TsやMDGの議論  論文投稿中。出版された暁には読んでフィードバックいただけると嬉しい Thank you for your Attention

References Abdo+09, ApJ 703, 1249 Atwood+09, ApJ 697, 1071 Casandjian+15, ApJ 806, 240 Fukui+14, ApJ 796, 59 Fukui+15, ApJ 798, 6 Grenier+05, Science 307, 1292 Kiss+04, A&A 418, 131 Planck Collaboration XI 2014, A&A 571, 11 Welty+89, ApJ 346, 232 Yamamoto+03, ApJ 592, 217 Yamamoto+06, ApJ 642, 307

Backup Slides

All-Sky Map in g Rays GeV g-ray sky = Point sources + Diffuse g rays Cosmi Rays (CRs) x ISM Cepheus & Polaris Taurus Orion R CrA 全天ガンマ線マップ 銀河座標 銀河面が水平の帯 明るいガンマ線源:  かに星雲、パルサー  銀河面のパルサー  系外の活動銀河核 「実は」広がったガンマ線放射が主成分。これはなんだろうか。 Chamaeleon MBM 53,54,55 Fermi-LAT 4 year all-sky map

All-Sky Map in Microwave Planck microwave map (30-857 GHz) = dust thermal emission = ISM Cepheus & Polaris Taurus Orion R CrA Planckによる全天マイクロ波マップ =「星間ガスのマップ」 銀河面の星間ガス、近傍の星間ガス Chamaeleon MBM 53,54,55 nearby gas in high latitude

Molecular Gas Scale height ~70 pc. Site star formation Usually traced by CO lines in radio not an “all-sky” map, uncertainty of XCO=N(H2)/WCO typically XCO~2x1020 cm-2/(K km/s) Galactic plane 分子ガス(CO map) scale height、全天マップ、不定性 CO 2.6 mm map (Dame+01)

Atomic Gas Scale height ~200 pc. Main component of ISM Usually traced by 21 cm line uncertainty due to the assumption of the spin temperature (Ts) Galactic plane 原子ガス(21cmマップ) scale height, Tsの不定性 HI 21 cm (LAB survey)

Atomic Gas Scale height ~200 pc. Main component of ISM Usually traced by 21 cm line uncertainty due to the assumption of the spin temperature (Ts) (opt-thin) Galactic plane 原子ガス(21cmマップ) scale height, Tsの不定性 HI 21 cm (LAB survey)

ISM Maps of the Region Studied N(HIthin) in 1020 cm-2 Wco in K km/s Td in K

Initial Modeling with a Single N(Htot) Map We assumed N(Htot)∝R (or t353) and constructed N(Htot) maps coefficients were determined by assuming that HI is optically thin and well represents N(Htot) in Td>21.5 K (dotted lines in slide #6) We used 7 years P8R2 data and modeled g-ray intensity as below qg is the emissivity model adopted. subscript i is for separating N(Htot) we found R-based N(Htot) better represents g-ray data in terms of lnL N(Htot) template (∝ R) (1020 cm-2) N(Htot) template (∝ t353) (1020 cm-2)

Td-Sorted Modeling Preliminary Even though R-based N(Htot) is preferred by g-ray data, true N(Htot) could be appreciably different Therefore we split N(Htot) template map into four based on Td and fit g-ray data with scaling factors freely varying individually scaling factors should not depend on Td if N(Htot)∝D (R or t353) Fit improves significantly and shows clear Td dependence of scaling factors the trend is robust against various tests of systematic uncertainty Preliminary

Possible Explanation of Td Dependence (1) We found, from g-ray data analysis, neither the radiance nor t353 are good tracers of N(Htot) Even though the interstellar radiation field (ISRF) is uniform in the vicinity of the solar system, the radiance (per H) could decrease as the gas (and dust) density increases, because the ISRF is more strongly absorbed by dust. This will cause a correlated decrease in the Td and the radiance (per H). Ysard+15, Fig.2 (radiance per H vs. Td for several choices of ISRF hardness. Both radiance and Td decrease as the ISRF is abosrbed)

Possible Explanation of Td Dependence (2) We found, from g-ray data analysis, neither the radiance nor t353 are good tracers of N(Htot) In the optically-thin limit, In = tn Bn(Td) = sn N(Htot) Bn(Td), where tn and sn are the optical depth and the dust opacity (cross section) per H, respectively. sn depends on the frequency and is often describes as a power law, giving In = tn0 (n/n0)b Bn(Td) (modified blackbody, b~1.5-2). Therefore, IF the dust cross section is uniform, tn ∝ N(Htot) and we can measure the total gas column density by measuring the dust optical depth at any frequency (e.g., t353). Relation btw. Tdust and b in MBM & Pegasus However, dust opacity is not uniform but rather anti-correlates with Td as reported by Planck Collaboration (2014).

Td-Corrected Modeling (2) We started with R-based N(Htot) map and employed an empirical function as below [modeling the increase of N(Htot) in areas with low Td] Tbk=20.5 K and C=2 [10% required increase in N(Htot) by 1K] gives best lnL, and obtained N(Htot,mod) and the spectrum are shown below N(Htot) inferred by g-ray data (1020 cm-2) Preliminary Preliminary

Td-Corrected Modeling (3) Obtained data count map (left) and model count map (right) Preliminary Preliminary

Discussion (HI emissivity) HI emissivity spectrum is compared with model curves based on the local interstellar spectrum (LIS) and results by relevant LAT studies Our spectrum agrees with the model for LIS with em (nuclear enhancement factor)=1.45, while previous LAT studies favor em=1.84 Most of difference can be understood due to the different N(Htot) inferred in low Td area where our method has more flexibility to adjust N(Htot) Preliminary

Intermediate Velocity Clouds We are studying high-latitude region, therefore most of gas is in local. Still, there are some clouds with different velocities [intermediate velocity clouds (IVCs)] (left) WHI of local clouds. (right) WHI of IVCs contribution of IVCs is at the ~5% level -30 < Vlsr (km/s) < 20 -80 < Vlsr(km/s) -30 (K km/s) (K km/s) local clouds IVCs