第6回授業(5/17)での学習目標 1.2.1 実験計画法のひろがり(途中から) 1.2.2 節完全無作為化デザインをもっと知 ろう

Slides:



Advertisements
Similar presentations
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
Advertisements

1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
第6回 適合度の検定 問題例1 サイコロを 60 回振って、各目の出た度数は次の通りであった。 目の出方は一様と考えてよいか。 サイコロの目 (i) 観測度数 : 実験値 (O i ) 帰無仮説:サイコロの目は一様に出る =>それぞれの目の出る確率 p.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
統計学入門2 関係を探る方法 講義のまとめ. 今日の話 変数間の関係を探る クロス集計表の検定:独立性の検定 散布図、相関係数 講義のまとめ と キーワード 「統計学入門」後の関連講義・実習 社会調査士.
エクセルと SPSS による データ分析の方法 社会調査法・実習 資料. 仮説の分析に使う代表的なモデ ル 1 クロス表 2 t検定(平均値の差の検定) 3 相関係数.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4日目第1時限の学習目標 3つ以上の平均値の差の検定(分散分析)の概要を知る。 (1)分散分析の例を知る。
寺尾 敦 青山学院大学社会情報学部 社会統計 第13回 重回帰分析(第11章後半) 寺尾 敦 青山学院大学社会情報学部
統計学第10回 多群の差を調べる~ 一元配置分散分析と多重比較 中澤 港
第4章補足 分散分析法入門 統計学 2010年度.
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
第2回授業 (10/2)の学習目標 第5章平均値の差の検定の復習を行う。 (詳細を復習したい者は、千野のWEB頁の春学期パワ
第1部 一元配置分散分析: 1つの条件による母平均の違いの検定 第2部: 2つの条件の組み合わせによる二元配置分散分析
第7回 独立多群の差の検定 問題例1 出産までの週数によって新生児を3群に分け、新生児期黄疸の
分散分析マスターへの道.
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
RコマンダーでANOVA 「理学療法」Vol28(7)のデータ
得点と打率・長打率・出塁率らの関係 政治経済学部経済学科 ●年●組 ●● ●●.
第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。
第4回 (10/16) 授業の学習目標 先輩の卒論の調査に協力する。 2つの定量的変数間の関係を調べる最も簡単な方法は?
データ分析2 1.平均値の比較のタイプ 2.対応のあるt検定 3.対応のないt検定 4.3つの以上のグループの差を調べる 5.参考文献
第5回(5/10) 授業の学習目標 1.1.5節 検定の前提とその適否について考えよう(テキスト輪読 p.10から p.11)
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
Bassモデルにおける 最尤法を用いたパラメータ推定
寺尾 敦 青山学院大学社会情報学部 社会統計 第9回:1要因被験者内デザイン 寺尾 敦 青山学院大学社会情報学部
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
心理統計学 II 第7回 (11/13) 授業の学習目標 相関係数のまとめと具体的な計算例の復習 相関係数の実習.
疫学概論 無作為化比較対照試験 Lesson 14. 無作為化臨床試験 §A. 無作為化比較対照試験 S.Harano,MD,PhD,MPH.
第4回講義(4/26)の学習目標 1.1.3節 2種類の過誤等の理解を深めよう 1.1.4節 効果量とは 1.1.5節 検定の前提とその適否
第8回授業(5/31)での学習目標 一事例デザインとは? 分割区画型反復測定デザインとは? メタ・アナリシスとは?。
確率・統計輪講資料 6-5 適合度と独立性の検定 6-6 最小2乗法と相関係数の推定・検定 M1 西澤.
第4日目第2時限の学習目標 検査(テスト)の信頼性について学ぶ。 (1)検査得点の構成について知る。 (2)検査の信頼性の定義を知る。
統計解析 第10回 12章 標本抽出、13章 標本分布.
対応のあるデータの時のt検定 重さの測定値(g) 例:
第8回 関連多群の差の検定 問題例1 健常人3名につき、血中物質Xの濃度を季節ごとの調べた。 個体 春 夏 秋 冬 a
寺尾 敦 青山学院大学社会情報学部 社会統計 第8回:多重比較 寺尾 敦 青山学院大学社会情報学部
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
寺尾 敦 青山学院大学社会情報学部 社会統計 第9回:実験計画法 寺尾 敦 青山学院大学社会情報学部
Excelによる実験計画法演習 小木哲朗.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
第4日目第1時限の学習目標 3つ以上の平均値の差の検定(分散分析)の概要を知る。 (1)分散分析の例を知る。
相関分析.
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
 統計学講義 第11回     相関係数、回帰直線    決定係数.
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
Rコマンダーで2元配置ANOVA 「理学療法」Vol28(8)のデータ
第11回授業(12/11)の学習目標 第8章 分散分析 (ANOVA) の学習 分散分析の例からその目的を理解する 分散分析の各種のデザイン
第10回授業(12/4)の目標 カイ2乗検定の実習 WEB を用いたカイ2乗検定と、授業で行った検定結果の正誤の確認方法(宿題)
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
母分散の検定 母分散の比の検定 カイ2乗分布の応用
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
第12回授業(12/18)の目標 ANOVA検定の実習 WEB を用いたANOVA検定と、授業で行った検定結果の正誤の確認方法(宿題)
データの型 量的データ 質的データ 数字で表現されるデータ 身長、年収、得点 カテゴリで表現されるデータ 性別、職種、学歴
母分散の検定 母分散の比の検定 カイ2乗分布の応用
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
第3日目第4時限の学習目標 第1日目第3時限のスライドによる、名義尺度2変数間の連関のカイ2乗統計量についての復習
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
サンプリングと確率理論.
第4日目第2時限の学習目標 検査(テスト)の信頼性について学ぶ。 (1)検査得点の構成について知る。 (2)検査の信頼性の定義を知る。
第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。
Presentation transcript:

第6回授業(5/17)での学習目標 1.2.1 実験計画法のひろがり(途中から) 1.2.2 節完全無作為化デザインをもっと知 ろう    ろう  (1)睡眠遮断実験の例、分散分析表、  (2)構造模型と各平方和、及び F 値の意      味

完全無作為化法(CR-pデサイン) 当該実験での主要な1つの因子の各水準に対して、各被験者を無作為に割り付ける方法。 水準 観測値 均質な被験者集団 A1 ・・・ Ap

完全無作為化要因(CRF-pq)デザイン 当該実験での主要な2つの因子の各水準に対して、各被験者を無作為に割り付ける方法。 CR-p デザインとどこが異なる? B1 … Bq A1 ׃ 均質な被験者集団 Ap

乱塊法(RB-pデサイン) 当該実験での主要な1つの因子の各水準に対して、 均質でない被験者を1つの局外因子によりブロック   均質でない被験者を1つの局外因子によりブロック 化し、ブロックごと無作為に割り付ける方法。 均質でない被験者を 1つの局外因子で分ける BL1 BLk ・・・ A1 ・・・ ・・・ Ap BLK BL1 BL2 ・・・

SPF-pq デザインとは? 当該実験で重要度の異なる2つの因子の水準に対して、各被験者を2つの局外因子によりブロック化し2段階の無作為割り付けにより被験者を割り付ける方法。 RB-p デザインとどこが異なる? 均質でない被験者を2つの 局外因子によりブロック化 B1 … Bq A1 BL(1)1 … BL(1)2 ׃ ׃ ׃ ׃ Ap … BL(1)p BL(2)1 BL(2)r BL(2)2 …

基本的なデザイン以外のデザイン テキスト pp.14-15 に紹介されている、基本的なデザイン以外の分散分析デザインを読みながら、その広がりを知ろう。

完全無作為化デザインの例 テキスト pp.16-17 の1.2.2 節 「完全無作為化デザインと多重比較」を読む前に、パワーポイントでその具体例を見てみよう。 具体例は、つぎに示す睡眠遮断実験で、ある時間被験者を強制的に眠らせないでおき、手先の敏捷性の変化を見るものである。

完全無作為化デザインの例 12h 24h 36h 48h 1 3 4 7 2 6 5 8 3 4 9 10 11 睡眠遮断実験データ    (Kirk, 1985) 要因ー睡眠遮断 要因数ー1 要因の水準ー4   12h, 24h, 36h, 48h の睡眠遮断条件 サンプル数ー各水準に8名づつ無作為割付 従属変数ー手先の鈍感さ 完全無作為化デザイン ANOVA 12h 24h 36h 48h 1 3 4 7 2 6 5 8 3 4 9 10 11

水準間での平均値の違いは             何を意味する? 睡眠遮断データでは、12時間、24時間、36時間、48時間の睡眠遮断を課す4グループ各8名の手先の敏捷性(鈍感度)のデータの平均値は、睡眠遮断時間が増すにつれて、増大している。 水準間での平均値の違いは、手先の敏捷性に対する睡眠遮断という要因の効果の有無を表している、と考えられる。

完全無作為化デザインの分散分析表とは? (テキスト p.17 の表 1.2 参照) 変動因 平方和 自由度 平均平方  F値  p値 要因名 SSA I-1 UA= SSA/(I-1) UA/UE p  誤差 SSE N-I UE= SSE/(N-I)   計 SST N-1

睡眠遮断データの分散分析表 変動因 平方和 自由度 平均平方 F値 p値 睡眠 遮断 194.5 3 63.83 44.28 .0001  p値  睡眠  遮断 194.5 3 63.83 44.28 .0001  誤差 41.0 28 1.46   計 235.5 31

分散分析での3つの仮定 (テキスト p.18 上部参照) (1)正規性     (構造模型の)誤差項は正規分布に従う (2)等分散性     各セルの(母集団での)分散はすべて     等しい (3)独立性     従属変数の値は互いに独立である

分散分析における構造模型(参考) が仮定される。 ここで、μは一般平均、αi は因子 A の第 i 水準の主効果、Eik は誤差項である。 構造模型ー分散分析では、どのデザインでも、それにより得られるデータ y を実現値とする確率変数 Y に対するモデル(構造模型)を仮定する。例えば、CR-p デザインでは、p.16 の下方の     Yik=μ+αi + Eik. (1.10)  が仮定される。   ここで、μは一般平均、αi は因子 A の第 i 水準の主効果、Eik は誤差項である。

基本用語1-平方和とは?(参考) 例えば、分散分析表の中の平方和の1つである SSAは、第 i 水準の Ni 人のサンプルの従属変数の値の平均を実現値とする確率変数から全サンプルの平均を引いたものの二乗和(平方和)である。 千野の WEB 頁では、 SSAは講義ノートのうちの「反復測定(測度)分散分析/基礎と応用」の1.3.1節の(1.8)式で定義されている:   

SSAの意味を知る-2(参考) テキストp.16 の (1.10) 式で定義される構造模型を用いると、SSA の構成要素 は、第 i 水準の主効果αi と、誤差にかかわる項 から成ることがわかる。

基本用語1-平方和とは-2(参考) 同じく分散分析表の中の平方和の1つである SS E は、第 i 水準の k 番目のサンプルの値 yik を実現値とする確率変数 Yik から第 i 水準の Ni 人のサンプルの平均を引いたものの二乗和(平方和)であり  千野のWEB頁では、上記1.3.1節の(1.9)式で  定義されている:

SSE の意味を知る-2(参考) SSA と同様の検討を行うと、SSEの構成要素である は、誤差にかかわる項 のみから成ることがわかる。

基本用語2-平均平方とは?-2(参考) つぎに、分散分析表の中の平均平方の1つである UAは、誤差平方和 SSA を 水準数I – 1 で割ったものである:

基本用語2-平均平方とは?-1(参考) 同様に、分散分析表の中の平均平方の1つで ある UEは、誤差平方和 SSE を 総サンプル数N マイナス水準数 I で割ったものである:

CR-p デザインにおける F 値の意味 結局、CR-p デザインにおける要因の効果検定 のための統計量 F は、要因の効果と 誤差に関 わる項の、誤差に関わる項に対する比 として定義されることがわかる。

分散分析における F 値の意味 分散分析では、データの全変動を、組み込 結局、CR-p デザインに限らず、一般に分散分析では、テキスト p.18 下方の枠内にまとめたように、   分散分析では、データの全変動を、組み込 んだ因子の変動と誤差変動に分解し、誤差 変動に比べて当該因子の変動がどれ程大 きいのかを検討する。