伝達事項 質問: W = −U にしなくて良いのか?どういう時に “−” (マイナス符号) がつくのか? 解答:

Slides:



Advertisements
Similar presentations
減衰自由振動の測定 理論と実験手順. この資料の内容 振動現象の重要性 実験の目的 学んだ振動の種類と特徴 振動のメカニズム 実験装置と方法.
Advertisements

1 べき関数の微分 微分の定義は 問題 微分の定義を使って、次の関数の微分を求めよ。 a) b) c) d) e) n は自然数 数2の復習.
質量 1kg 重力 ( 重さ )9.8N 〇重力加速度 地球の重力によって生じる加速度を重力加速度(通 常は,記号 g を用いて表す)と呼ぶ。高校物理のレベル では,一定の値とし, 9.8m/s 2 を用いる。中学校理科の レベルでは,重力加速度を直接的に問題にすることは ないが,それをおよそ 10m/s.
1 運動方程式の例2:重力. 2 x 軸、 y 軸、 z 軸方向の単位ベクトル(長さ1)。 x y z O 基本ベクトルの復習 もし軸が動かない場合は、座標で書くと、 参考:動く電車の中で基本ベクトルを考える場合は、 基本ベクトルは時間の関数になるので、 時間で微分して0にならない場合がある。
1 今後の予定 8 日目 11 月 17 日(金) 1 回目口頭報告課題答あわせ, 第 5 章 9 日目 12 月 1 日(金) 第 5 章の続き,第 6 章 10 日目 12 月 8 日(金) 第 6 章の続き 11 日目 12 月 15 日(金), 16 日(土) 2 回目口頭報告 12 日目 12.
有効座席(出席と認められる座席) 左 列 中列 右列 前で3章宿題、アンケートを提出し、 3章小テスト問題、4章講義レポート課題を受け取り、
計測情報処理論(4) レンズの基礎.
慣 性 力 と 浮 力.
環境表面科学講義 村松淳司 村松淳司.
医薬品素材学 I 1 物理量と単位 2 気体の性質 1-1 物理量と単位 1-2 SI 誘導単位の成り立ち 1-3 エネルギーの単位
生体分子解析学 2017/3/2 2017/3/2 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
・力のモーメント ・角運動量 ・力のモーメントと角運動量の関係
伝達事項 皆さんに数学と物理の全国統一テストを受けても らいましたが、この時の試験をまた受けていただ きます。
伝達事項 過去のレポートを全て一緒に綴じて提出されている 方が何名かいらっします。 せっかくの過去の宿題レポートが紛失する可能性を
コリオリ力の復習資料 見延 庄士郎(海洋気候物理学研究室)
物理学基礎及び演習 電気電子工学科 1年次E2クラス 鮫島 俊之 蓮見 真彦.
相模原理科教室 2011 Y字振子で絵を描こう 理科で遊ぼう会.
有効座席(出席と認められる座席) 左 列 中列 右列 前で4章宿題、アンケートを提出し、 4章小テスト問題、5章講義レポート課題を受け取り、
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
6. エネルギーとその保存則 6.1 仕事 6.2 仕事の一般的定義 6.3 仕事率 6.4 保存力と位置エネルギー
剛体の物理シミュレーション は難しい? 佐藤研助手 長谷川晶一.
演習(解答) 質量100 gの物体をバネに吊るした時、バネが 19.6 cm のびた。
水中で落下する球体の運動.
第6回:電流と磁場(2) ・電流が磁場から受ける力 ・磁場中の荷電粒子が受ける力とその運動 今日の目標
天秤の釣り合い 棒と糸の重さは無視できるものとし,(ア)から(カ)に はたく重さを求めよ。.
次に 円筒座標系で、 速度ベクトルと加速度ベクトルを 求める.
工業力学 補足・復習スライド 第13回:偏心衝突,仕事 Industrial Mechanics.
1.Atwoodの器械による重力加速度測定 2.速度の2乗に比例する抵抗がある場合の終端速度 3.減衰振動、強制振動の電気回路モデル
伝達事項 試験は6/6 (土) 1限目の予定です。.
伝達事項 質問: W = −U にしなくて良いのか?どういう時に “−” (マイナス符号) がつくのか? 解答:
重力レンズ効果を想定した回転する ブラックホールの周りの粒子の軌道
基礎物理学 担当:田中好幸(薬品分析学教室).
物理学Ⅰ - 第 2 回 - 前回の復習 運動の表し方 位置と速度(瞬間の速度) 速度と平均速度、スピードはしっかり区別
原子核物理学 第4講 原子核の液滴模型.
Philosophiae Naturalis Principia Mathematica
微粒子合成化学・講義 村松淳司
物理学セミナー 2004 May20 林田 清 ・ 常深 博.
物理学基礎及び演習 電気電子工学科 1年次E2クラス 鮫島 俊之 蓮見 真彦.
物理学Ⅰ - 第 4 回 - 前回の復習 力について ニュートンの三法則 ベクトル量 重力と電磁気力(→分子間力)が本質 遠隔力・・・重力
黒体輻射 1. 黒体輻射 2. StefanのT4法則、 Wienの変位測 3. Rayleigh-Jeansの式
今後の予定 4日目 10月22日(木) 班編成の確認 講義(2章の続き,3章) 5日目 10月29日(木) 小テスト 4日目までの内容
有効座席(出席と認められる座席) 左 列 中列 右列.
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
メンバー 梶川知宏 加藤直人 ロッケンバッハ怜 指導教員 藤田俊明
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
物理学Ⅰ - 第 11 回 - 前回のまとめ 回転軸の方向が変化しない運動 回転運動のエネルギーとその応用 剛体の回転運動の方程式
物理学基礎及び演習 電気電子工学科 1年次E2クラス 鮫島 俊之 蓮見 真彦.
物理学Ⅰ - 第 9 回 -.
物理学Ⅰ - 第 8 回 - アナウンス 中間試験 次回講義(XX/XX)終了前30分間 第7回講義(運動量)までの内容 期末試験
有効座席(出席と認められる座席) 左 列 中列 右列.
応力(stress, s, t ) 自由物体図(free-body diagram)において、外力として負荷荷重P が作用したとき、任意の切断面で力の釣り合いを考慮すると、面における単位面積あたりの内力が存在する、それを応力といい、単位は、Pa(N/m2) で表す。面に垂直に働く垂直応力、s と平行に働くせん断応力、
有効座席(出席と認められる座席) 左 列 中列 右列.
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
期末テスト 1.日時: 1月26日(木) 4,5限 試験時間:90分程度 2.場所: 1331番教室
機器分析学 赤外吸収スペクトル ラマンスペクトル.
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
ニュートン力学(高校レベル) バージョン.2 担当教員:綴木 馴.
今後の予定 8日目 11月13日 口頭報告答あわせ,講義(5章) 9日目 11月27日 3・4章についての小テスト,講義(5章続き)
落下水膜の振動特性に関する実験的研究 3m 理工学研究科   中村 亮.
宿題を提出し,宿題用解答用紙を 1人2枚まで必要に応じてとってください 配布物:ノート 2枚 (p.85~89), 小テスト用解答用紙 1枚
有効座席(出席と認められる座席) 左 列 中列 右列.
電子物性第1 第10回 ー格子振動と熱ー 電子物性第1スライド10-1 目次 2 はじめに 3 格子の変位 4 原子間の復元力 5 振動の波
円の復習.
力覚インタラクションのための 物理ベースモデリング
基礎物理学 担当:田中好幸(薬品分析学教室).
基礎物理学 担当:田中好幸(薬品分析学教室).
コンクリート構造物の 力学を学ぶために コンクリート工学研究室 岩城 一郎.
電磁気学C Electromagnetics C 7/10講義分 電気双極子による電磁波の放射 山田 博仁.
科学概論 2005年1月27日
Presentation transcript:

伝達事項 質問: W = −U にしなくて良いのか?どういう時に “−” (マイナス符号) がつくのか? 解答: 質問: テスト勉強は計算を中心にやるべきですか? どうやって勉強すれば物理が出来るようになりま すか? 解答:

3章 仕事とエネルギー

仕事(定義) 摩擦力に逆らって床の上の物体を力 F N で d m 移動するのに 必要な仕事量 W は、以下のように定義される。 d(m) W = F(N)•d(m) = Fd(N•m) F(N) 仕事 W = Fd(J) ゆっくりと床の上の2 kg の物体を 3 m 持ち 上げるのに必要な仕事量 W を求める。重力 加速度は g のままとする。 3 m W = 2g(N)•3(m) = 6g(N•m) = 6g (J) W = m(kg)g(m•s-2)h(m) = mgh (J) F = 2g N

位置エネルギー 床の上の h m の位置にある m kg の物体が持 つ位置エネルギー U J を求める。重力加速度 は g のままとする。 F = mg(N) U = m(kg)g(m•s-2)h(m) = mgh (kg•m2•s-2) = mgh (J) 位置エネルギー U J は、床の上の m kg の物 体を h m 持ち上げるのに必要な仕事量 W と 等しい。 h(m) W = m(kg)g(m•s-2)h(m) = mgh (J) U(J) = W(J) 即ち、物体は仕事量 W を受け取って、位置 エネルギー U J を得たと考えられる。 F = mg(N)

位置エネルギー ⇔ 運動エネルギー 宇宙空間を、速度 v (m/s) で転がる質量 m kg の球がある。 この球がもつ運動エネルギー K J を求める。重力加速度は g とする。 K = (1/2)m(kg)v2 (m•s-1)2 = (1/2)mv2 (kg•m2•s-2) = (1/2)mv2 (J) v(m•s-1) K(J) = (1/2)mv2 (J) 床面から h(m) の高さにある物体の位置エ ネルギー U J は U = mgh(J)。 この物体を自由落下させると速度を増しな がら落下する (等加速度運動)。 h(m) 位置エネルギーが運動エネルギーに変換さ れた。 v(m•s-1)

力学的エネルギー保存則 UH = mgh(J) 床面から h(m) の高さにある物体の位置エ ネルギー U J は U = mgh(J)。 KH = 0 (J) この物体を自由落下させると速度を増しな がら落下する (等加速度運動)。 h(m) 位置エネルギー U が運動エネルギー K に 変換された。U と K は互いに交換可能 即ち、 UH = −KL v(m•s-1) mgh(J) = −(1/2)mv2(J) UL = 0 (J) KL = (1/2)mv2(J) 全エネルギー E は E = UH + KH = UL + KL = 一定 (力学的エネルギー保存則)

運動エネルギー ⇔ 仕事 K1 − K0 = W 外力を加えて初速度 v0 (m/s) を速度 v1 (m/s) に変化させた時 W(J) K1 − K0 = W K0 = (1/2)mv02 K1 = (1/2)mv12 速度変化 v0 → v1 (m/s) による運動エネルギー変化 K1 − K0 は 外力による仕事 W に等しい。 K1 > K0 の時 W > 0 (仕事Wにより運動エネルギー K ↑) K1 < K0 の時 W < 0 (始状態→終状態で K ↓) (運動エネルギーから仕事Wを取り出した)

ポテンシャルエネルギー 位置エネルギーは数あるポテンシャルエネルギーの一つ 位置エネルギー:重力場中のポテンシャルエネルギー m1•m2 重力(重力場に発生する力) F = G r2 m1: 物体1の質量, m2: 物体2の質量, r: 物体間距離, G: 重力定数 電場エネルギー(電位):電場中のポテンシャルエネルギー q1•q2 静電相互作用(クーロン力) F = k r2 q1: 物体1の電荷, q2: 物体2の電荷, r: 物体間距離, k: 比例定数

重力と重力加速度 位置エネルギーは数あるポテンシャルエネルギーの一つ 位置エネルギー:重力場中のポテンシャルエネルギー m1•m2 重力(重力場に発生する力) F = G r2 m1: 物体1の質量(kg), m2: 物体2の質量(kg), r: 物体間距離(m), G: 重力定数(kg•m3•s-2) ここでm1に地球の質量M1、r に地球の半径Rを代入すると M1•m2 M1 F = G = (G ) m2 = gm2 = m2g (= mg) R2 R2 M1 即ち、重力加速度は g = (G ) R2

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 (1) 物体のもつ位置エネルギー U (J) を求めなさい。 2m (2) 物体に働く垂直抗力を求めよ。 30° (3) 斜面に平行な方向に物体が受ける力を求めよ。 (4) 物体が斜面の下まで下りた時の位置エネルギーはいくらか。 (5) 物体が斜面の下まで下りた時の運動エネルギーはいくらか。 (6) 物体が斜面の下まで下りた時の速度はいくらか。斜面と床面 は滑らかにつながっているものとする。

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 mg•cos(30°) (1) 物体のもつ位置エネルギー U (J) を求めなさい。 30° 鉛直上向きを正にとると 30° −mg U = mgh = 5(kg)×g(m/s2)×2(m) = 10g J または 98 J 30° 2m −mg•cos(30°) (2) 物体に働く垂直抗力を求めよ。 (鉛直上向きを正にとると) 物体に働く重力 F1 = −mg = −5(kg)×g (m/s2) = −5g (N) 垂直抗力 F2’ = −球が斜面を垂直に押す力 F2 = mg•cos(30°) = 5g(√3/2) = (5√3/2)g (N)

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 −mg•sin(30°) 30° (3) 斜面に水平方向に物体が受ける力F3を求めよ。 30° 鉛直上向きを正にとっているので 2m −mg 30° F3 = −mg•sin(30°) = −5g(1/2) = −5g/2 (N) (4) 物体が斜面の下まで下りた時の位置エネルギー UU はいくらか。 UU = mgh = 5(kg)×g(m/s2)×0(m) = 0 J (5) 物体が斜面の下まで下りた時の運動エネルギー KU はいくらか。 KU = UU − U = 0 − 10g = −10g J 答 斜面に平行下向きに10g J

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 (6) 物体が斜面の下まで下りた時の速度はいくらか。斜面と床面 は滑らかにつながっているものとする。 2m 30° 鉛直上向きを正にとっているので KU = −10g(J) = −(1/2)mv2 = −(1/2)×5(kg)×v2(m/s)2 = −5v2/2 −5v2/2 = −10g(J) v2 = (2/5)×10g = 4g |v| = √4g = 2√g m/s 答 斜面に平行下向きに2√g m/s

√ 公式 (試験に出すので暗記すること) 速度 v = at (自由落下)速度 v = gt 距離 D = 2 1 at2 力 F = ma 万有引力 F = G m1•m2 r2 摩擦力 F = μN 重力 F = mg 復元力 F = −kx 回転運動 接線方向速度 v = rω 向心加速度 a = rω2 単振動振動数 fv = m k √ 2π 1 振動数(周波数) f = 1/T 仕事 W = Fd 運動エネルギー K = 2 1 mv2 位置エネルギー U = mgh v: 速度(m•s-1); g: 重力加速度(m•s-2); t: 時刻(s); D or d: 距離(m); a: 加速度(m•s-2); F: 力(N); m: 質量(kg); N: 垂直抗力(N); μ: 摩擦係 数(無次元); r: 半径(m); ω: 角速度(rad/s); T: 周期(s); f: 振動数(s-1 or Hz); x: 変位(m); k: バネ定数(N•m-1); W: 仕事(J); h: 高さ(m); G: 重力定数(kg•m3•s-2)

演習 ① 下線のとことに入る数値をべき乗を使って表しなさい(有効数字2桁)。 30 km = m = mm = cm 15 cm = m = km = mm 3.0 kg = g = mg = mg 1.0 m3 = L = mL = mL = cc ② 高さ49 mの屋上から物体を落としたときの速度と時間の 関係をグラフに描きなさい。ただし、鉛直下向きの変位を負 とする。 ③ 高さ49 mの屋上から物体を落としたときの物体の変位と 時間の関係をグラフに描きなさい。ただし、屋上の位置を 原点とし、鉛直下向きの変位を負とする。

演習 ④ 質量4 kgの物体が下図の斜面に静止していた時、下記の量を計算 しなさい。ただし鉛直上向きを正の方向とし、 に摩擦力は生じないものとする。 F : 物体に働く重力 5 m 45° N : 斜面が物体を押し返す垂直抗力 U : 物体の位置エネルギー(物体の高さは物体の一番低い点の高さと する) W : 斜面に沿って物体を図示した位置まで移動するのに必要な仕事 K : 物体が斜面に沿って滑った時、地面につく直前の運動エネルギー U : 物体が斜面に沿って滑った時、地面につく直前の速度

演習 ⑤ 質量200 gの物体を地面に置いたまま150 cm移動した。ただし、 鉛直上向きを正にとり、地面と床の摩擦係数μ = 10(無次元)、 重力加速度をgとする。 F1 : 物体に働く重力 N : 斜面が物体を押し返す垂直抗力 F2 : 物体と床面の摩擦力 W : 物体を150 cm移動するのに必要な仕事 K : 10 m/s の速度で物体を押した直後の物体の運動エネルギー U : 10 m/s の速度で物体を押した後、物体が静止するまでの距離

演習 ⑥ 長さ 800 cmのヒモの先端に質量1 kgの重 りをつけて、5秒間で1回転で回転している。 このヒモと物体についての以下の問いに答え なさい。円周率はπのままで良い。 800 cm (1) ヒモによる向心加速度a (m/s2) を求め なさい。 (2) ヒモの張力を求めなさい。 (3) 図の位置から物体が回転運動を始めた時、物体のx軸(横軸)上 の座標をグラフで表しなさい。 (4) (3)のグラフを数式で表しなさい。 (5) 円周の接線方向の物体の速度vを求めなさい。

演習 ⑦ バネ定数k = 10 N•m-1のバネに質量10 g の物体がぶらさがってい 向きを正にとる。 (1) この物体がバネにぶら下がった時のバネの伸びを計算すること (2) この物体が単振動した時の振動数を計算すること。 (3) この物体の重さとバネの張力が釣り合う位置から、物体を10 cm ほど下に引いた。手を離した瞬間の物体に働く復元力を求めなさ い。 (4) (3)の時、この物体の単振動中の最大速度を求めなさい。 (5) (4)で求めた最大速度がでる位置を答えなさい。