第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。

Slides:



Advertisements
Similar presentations
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
Advertisements

1 章 データの整理 1.1 データの代表値. ■ 母集団と標本 観測個数 n ( または 標本の大きさ、標本サイズ、 Sample Size) n が母集団サイズに等しい時 … 全標本 または 全数調査 (census) 母集団 (population) 知りたい全体 標本 (sample) 入手した情報.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
1 変量データの記述 (度数分布表とヒストグラム) 経済データ解析 2009 年度後 期. あるクラスのテストの点数が次のように なっていたとする。 このように出席番号と点数が並んでいるものだけでは、 このクラスの特徴がわかりづらい。 → このクラスの特徴がわかるような工夫が必要 → このクラスの特徴がわかるような工夫が必要.
Advanced Data Analysis 先進的データ分析法 2015 (2) 平成 27 年前期第1クウォータ科目 東京工科大学大学院 バイオニクス・情報メディア学専攻科 担当:亀田弘之.
社会福祉調査論 第 8 講 統計の基本的整理 12 月7日. 【目標】 量的調査の集計方法、結果の示し方につ いて、基礎的な手法を習得する。 統計値を捉えるための諸指標を理解する。
生物統計学・第 4 回 比べる準備をする 平均、分散、標準偏差、標準誤差、標準 化 2015 年 10 月 20 日 生命環境科学域 応用生命科学類 尾形 善之.
中学校段階での 相関関係の指導 宮崎大学教育文化学部 藤井良宜. 概要 現在の学習指導要領における統計の扱い これまでの相関関係の指導 相関関係の指導のポイント 相関関係.
1 統計学 第2週 10/01 (月) 担当:鈴木智也. 2 前回のポイント 「記述統計」と「推測統計」。 データ自体の規則性を記述するのが 「記述統計」、データを生み出した背 景を推測するのが「推測統計」である。 推測統計は記述統計に基づくので、ま ずは記述統計から学ぶ。 以下、データの観測値をX.
エクセルと SPSS による データ分析の方法 社会調査法・実習 資料. 仮説の分析に使う代表的なモデ ル 1 クロス表 2 t検定(平均値の差の検定) 3 相関係数.
データ解析基礎 2. 度数分布と特性値 keyword データの要約 度数分布表,ヒストグラム 分布の中心を表す基本統計量
統計解析 第3章 散布度.
寺尾 敦 青山学院大学社会情報学部 R での連関測度の計算方法 寺尾 敦 青山学院大学社会情報学部
第1章 記述統計の復習 統計学 2007年度.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
第3章 2変量データの記述 統計学基礎 2010年度.
実証分析の手順 経済データ解析 2011年度.
統計学 第3回 「データの尺度・データの図示」
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 データ入力 データ分析 報告書の作成.
代表値と散らばり.
標本の記述統計 専修大学 経済学部 経済統計学(作間逸雄).
第1章 記述統計の復習 統計学 2010年度.
第4回 (10/16) 授業の学習目標 先輩の卒論の調査に協力する。 2つの定量的変数間の関係を調べる最も簡単な方法は?
心理統計学 II 第7回 (11/13) 授業の学習目標 相関係数のまとめと具体的な計算例の復習 相関係数の実習.
流れ(3時間分) 1 ちらばりは必要か? 2 分散・標準偏差の意味 3 計算演習(例題と問題) 4 実験1(きれいな山型の性質を知ろう)
確率・統計Ⅱ 第7回.
臨床統計入門(3) 箕面市立病院小児科  山本威久 平成23年12月13日.
統計学 第3回 10/11 担当:鈴木智也.
統計学 10/19 鈴木智也.
第4日目第2時限の学習目標 検査(テスト)の信頼性について学ぶ。 (1)検査得点の構成について知る。 (2)検査の信頼性の定義を知る。
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
統計リテラシー育成のための数学の指導方法に関する実践的研究
1変量データの記述 経済データ解析 2006年度.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 データ入力 データ分析 報告書の作成.
心理統計学 II 第8回(11/20) 授業の目標 相関係数の検定のWEB宿題のやり方
相関分析.
看護研究における 統計の活用法 Part 1 京都府立医科大学 浅野 弘明 2012年11月10日.
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
第4日目第3時限の学習目標 検査の信頼性(続き)を学ぶ。 妥当性について学ぶ。 (1)構成概念妥当性とは? (2)内容妥当性とは?
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
代表値とは 散布度とは 分布のパラメータ 母集団とサンプル
第11回授業(12/11)の学習目標 第8章 分散分析 (ANOVA) の学習 分散分析の例からその目的を理解する 分散分析の各種のデザイン
第1日目第1時限の学習目標 平成22年度「教育統計」の学習内容の概要を知る。 尺度の4水準の例とそれらの特色の概要を学ぶ。
第2日目第1時限の学習目標 順列、組み合わせ、確率の入門的知識を学ぶ。 (1)順列とは? (2)組み合わせとは? (3)確率とは?
第10回授業(12/4)の目標 カイ2乗検定の実習 WEB を用いたカイ2乗検定と、授業で行った検定結果の正誤の確認方法(宿題)
秋期 第1回(9/25)授業の目標 授業五か条の再確認をする。 秋期の心理統計学の学習内容を知る。 2、3の注意事項を確認する。
中澤 港 統計学第4回 中澤 港
他の平均値 幾何平均 調和平均 メデイアンとモード 平均値・メデイアン・モードの関係.
確率と統計 メディア学部2008年後期 No.3 平成20年10月16日(木).
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
第1日目第3時限の学習目標 2変量データを手にした時の分布の特徴の記述方法(前回からの続き)について学ぶ。 基本的な2変量統計量ー1
analysis of survey data 堀 啓造
第12回授業(12/18)の目標 ANOVA検定の実習 WEB を用いたANOVA検定と、授業で行った検定結果の正誤の確認方法(宿題)
データの型 量的データ 質的データ 数字で表現されるデータ 身長、年収、得点 カテゴリで表現されるデータ 性別、職種、学歴
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
都市・港湾経済学(総) 国民経済計算論(商)
代表値と散らばり.
度数分布表における平均・分散 (第1章 記述統計の復習 補足)
情報の集約 記述統計 記述統計とは、収集したデータの分布を明らかにする事により、データの示す傾向や性質を要約することです。データを収集してもそこから情報を読み取らなければ意味はありません。特に膨大な量のデータになれば読みやすい形にまとめて要約する必要があります。
第3日目第4時限の学習目標 第1日目第3時限のスライドによる、名義尺度2変数間の連関のカイ2乗統計量についての復習
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
1変量データの記述 (度数分布表とヒストグラム)
臨床統計入門(1) 箕面市立病院小児科  山本威久 平成23年10月11日.
第2章 統計データの記述 データについての理解 度数分布表の作成.
回帰分析入門 経済データ解析 2011年度.
統計現象 高嶋 隆一 6/26/2019.
第4日目第2時限の学習目標 検査(テスト)の信頼性について学ぶ。 (1)検査得点の構成について知る。 (2)検査の信頼性の定義を知る。
第1日目第1時限の学習目標 平成21年度「教育統計」の学習内容の概要を知る。 尺度の4水準の例とそれらの特色の概要を学ぶ。
第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。
Presentation transcript:

第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。 2変量データを手にした時の分布の特徴の記述方法について学ぶ。 基本的な2変量統計量ー1          カイ2乗統計量について学ぶ。

基本的な1変量統計量ー2 (a) 中央値、四分領域 中央値ーデータを小さい順に並べたとき、中央(50パーセント点)にくる値のこと。 第1四分位数ーデータを小さい順から大きい順に並べたとき、下から4分の1(25パーセント点)にくる値のこと。 第3四分位数ーデータを小さい順から大きい順に並べたとき、下から4分の3(75パーセント点)にくる値のこと。 四分領域ーデータを小さい順に並べたとき、第3四分位数と第1四分位数の差の半分の値のこと。

基本的な1変量統計量ー2 (b) 四分位数と四分領域 Q の関係 Q = (Q3-Q1)/2 25% 25% 25% 25% Q1 Mdn Q3

基本的な1変量統計量ー2 (c) 中央値 (Median) の求め方 中央値の求め方は、「心理統計学 a」のテキストの p.17 の (4.1) 式の通りである。すなわち、 • ここで、lm は、中央値のある階級の下限点、 • h は、階級の幅、 • cum (lm) は、中央値のある階級より1つ手前までの   累積度数、 • fm は、中央値のある階級の度数

基本的な1変量統計量ー2 (d)第1四分位数 の求め方 第1四分位数の求め方は、「心理統計学 a」のテキストの p.17 の (4.2) 式の通りである。すなわち、 • ここで、lQ1 は、第1四分位数のある階級の下限点、 • h は、階級の幅、 • cum (lQ1) は、第1四分位数のある階級より1つ手前   までの累積度数、 • fQ1 は、第1四分位数のある階級の度数

基本的な1変量統計量ー2 (e) 第3四分位数 の求め方 第3四分位数の求め方は、「心理統計学 a」のテキストの p.17 の (4.3) 式の通りである。すなわち、 • ここで、lQ3 は、第3四分位数のある階級の下限点、 • h は、階級の幅、 • cum (lQ3) は、第3四分位数のある階級より1つ手前   までの累積度数、 • fQ3 は、第3四分位数のある階級の度数

基本的な1変量統計量ー2 (f) 四分領域の求め方 これらにより、中央値 (Mdn)、第1四分位数 (Q1)、第3四分位数 (Q3) が求まったならば、テキスト p.16 の下方の公式により、 として、四分領域 (Q) を求めればよい。

基本的な1変量統計量ー2 (g) 最頻値(mode) 最頻値ー得られる確率が最も高い値、もしくは得えられる頻度の最も多い値。 右の図では、2つの山のうちの右側に対応するxの値 (mode と  表記)。 x mode

基本的な1変量統計量ー2 (h) 中央値、四分領域、最頻値の性質 中央値、四分領域は、順序情報以上の尺度レベルのデータでは計算可能である。なぜ? 最頻値は、名義尺度、順序尺度、間隔尺度、比率尺度のいずれのレベルのデータでも計算可能である。なぜ?

基本的な1変量統計量ー2 まとめ これまでに学んだ基本的な1変量統計量の代表的な幾つかを尺度水準との関連でまとめると右の図のようになる。 基本的な1変量統計量ー2       まとめ これまでに学んだ基本的な1変量統計量の代表的な幾つかを尺度水準との関連でまとめると右の図のようになる。 順序尺度 間隔尺度・比率尺度 代表値 中央値  (Mdn)  平均 ばらつき 四分位数    (Q) 標準偏差(分散)

2変量データを手にした時の 分布の特徴の記述-1 2変量データを手にした時の        分布の特徴の記述-1 何らかの目的で N 対の対データ(2変量データ)  を手にしたとする。 サンプル数 N がある程度以上大きい場合、簡単にデータの全体像をつかむためには、データが原則的に名義尺度レベルの場合はまず分割表を、順序尺度レベル以上であれば散布図を描けばよい。

2変量データを手にした時の 分布の特徴の記述-2 2変量データを手にした時の        分布の特徴の記述-2 分割表とは、例えば514名の被験者を(行と列の)2つの属性を用いて、右のように分類したものである。 厳しすぎ 適当 もっと厳しく  男  27 275  75  女   3 124  10

データの内容ー1 上記データは、新入生に対する永平寺参禅時の514名の学生に対する、参禅後の調査データを2つの属性で分類したものである。 属性の1つは学生の性別(男子、女子)であり、他方は永平寺の雲水による坐禅指導の評価(厳しすぎた、適当、もっと厳しく)である。

データの内容ー2 もとのデータは、上記2変量の対(x、y)が、 (性別、座禅指導の評価)、 から成る、一対のデータ、514名分である。       (性別、座禅指導の評価)、  から成る、一対のデータ、514名分である。 (2,2)、(2,3)、(1,2)、… 、(1,2) これらを、うえの表のようにまとめたものは、 分割表または、クロス表と呼ばれる 。

分割表(又はクロス表)の作り方 データ (2,2)、(2,3)、(1,2)、… 、(1,2) 1.厳し 過ぎた 2. 適当 3.もっと データ (2,2)、(2,3)、(1,2)、… 、(1,2) 1.厳し  過ぎた 2. 適当 3.もっと   厳しく   計 1.男子   学生 2.女子

       演習(2) 次の20対(20名)の2変量データセットの1つを用いて、2×2分割表を作成せよ。ここで、(x、y)変量のうち、前者は性別を後者は向性(外向、内向)を表すものとする:   (データセット1):      (1,1)、(2,2)、(1,2)、(1,1)、(2,1)、      (1,1)、(2,1)、(2,1)、(1,1)、(2,2)、      (1,2)、(1,2)、(1,1)、(1,2)、(2,1)、      (1,2)、(1,1)、(1,1)、(1,2)、(1,2)

    演習(2)の続き (データセット2): (2,1)、(2,2)、(2,1)、(1,1)、(2,1)、 (1,1)、(2,2)、(2,1)、(1,2)、(1,2)、 (1,2)、(1,2)、(1,2)、(1,2)、(2,1)、 (2,2)、(2,2)、(1,2)、(1,2)、(2,1)

2変量データを手にした時の 分布の特徴の記述-3 2変量データを手にした時の        分布の特徴の記述-3 散布図とは、例えば、千野のホームページの講義ノートの中の「データ解析/基礎と応用」の 1.2.3節 「はずれ値の相関係数への影響」の項にあるような図である。

2変量データを手にした時の 分布の特徴の記述-4 2変量データを手にした時の        分布の特徴の記述-4 データが名義尺度レベルの場合には、うえで紹介した分割表(クロス表)をもとに、2変量間の連関を表すための以下のような多くの指標がある。 それらは、例えば、統計学辞典(東洋経済、1989、pp.341-343)を見ると、以下のように各種の指標がこれまでに提案されていることがわかる:

2変量データを手にした時の 分布の特徴の記述-5 2変量データを手にした時の        分布の特徴の記述-5 それらは、  (1)カイ2乗統計量系指標(ピアソンのカイ2乗統計量、    クラメールのV、チュプロウの T、ピアソンの一致係 数 C、尤度比カイ2乗統計量)  (2)予測関連指標(グッドマン・クラスカルの予測関連     指数)  (3)その他、ヘイズの不確実性係数、コーエンの一致    係数など。

2変量データを手にした時の 分布の特徴の記述-6 2変量データを手にした時の        分布の特徴の記述-6 一方、データが順序尺度レベルの場合には、2変量間の順位相関・関連係数を表すための以下のような多くの指標がある。例えば統計学辞典(東洋経済、1989、pp.338-340) 。 それらは、  (1)ケンドールの順位相関係数   (2)スピアマンの順位相関係数  (3)ソマーズの関連指数、その他  である。

2変量データを手にした時の 分布の特徴の記述-7 2変量データを手にした時の        分布の特徴の記述-7 最後に、データが間隔尺度レベルの場合には、2変量間の相関関係を表すための以下のような指標がある。例えば統計学辞典(東洋経済、1989、pp.334-337) を見ると、 それらは、  (1)共分散  (2)ピアソンの(偏差積率)相関係数  (3)偏相関係数、重相関係数、偏回帰係数、その他  である。

2変量データを手にした時の 分布の特徴の記述-8 2変量データを手にした時の        分布の特徴の記述-8 この授業では、これらのうち、   (1)名義尺度レベルの対データの場合の代表的な連関の関連性の検討のための統計量であるピアソンのカイ2乗統計量と、   (2)間隔尺度レベル以上の対データの場合の代表的な2変量間の関連性の指標である共分散及び相関係数 についてのみ、簡単に触れる。