第6章 無機化学 6・1 単体の構造と物性 6・1・1 典型元素 [1族] どうしてHは分子性結晶で、Li、Na、・・・は金属結晶なの か?

Slides:



Advertisements
Similar presentations
物理化学 福井工業大学 工学部 環境生命化学科 原 道寛. 物理化学: 1 章原子の内部 (メニュー) 1-1. 光の性質と原子のスペクトル 1-2. ボーアの水素原子モデル 1-3. 電子の二重性:波動力学 1-4. 水素原子の構造 1-5. 多電子原子の構造 1-6.
Advertisements

無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
無機化学 II 坪村太郎. 無機化学 II 第1回第1回 4/7 無機化学Iの復習と無機化学IIで学ぶこととのかかわり 第2回第2回 4/14 無機化学と環境、資源 第3回第3回 4/21 産業と無機化合物のかかわり 第4回第4回 4/28 遷移金属元素 性質と資源 * 第5回第5回 5/12 遷移金属の化合物.
表、グラフ、 SmartArt の実習課題. 1月1月睦月 January 7月7月文月 July 2月2月如月 February 8月8月葉月 August 3月3月弥生 March 9月9月長月 September 4月4月卯月 April 10 月神無月 October 5月5月皐月 May.
化学概論 第5回 GO⇒41⇒GO を押してください 33 / 80.
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
第5章 無機化学 5・1 単体の構造と物性 5・1・1 典型元素
元素の周期表 教科書 p 元素を 原子番号 順に並べる 性質の良く似た元素がある周期で現れる 元素の周期律 周期表
セラミックス 第4回目 5月 13日(水)  担当教員:永山 勝久.
アルギン酸 アルギン酸とは‥ 化学構造 ・昆布、わかめに代表される褐藻類の細胞間物質の主成分
水の話 水分子の特徴 小さい分子なのに常温で液体 水(液体)から氷(固体)になると 体積が大きくなる。 電気陰性度が大きい原子は 分極
無機物質 金属元素 「金属イオンの分離」 3種類の金属イオン      をあてよう! 実験プリント 実験カード.
固体の圧電性.
金箔にα線を照射して 通過するα線の軌跡を調べた ラザフォードの実験 ほとんどのα線は通過 小さい確率ながら跳ね返ったり、
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
基盤科学への招待 クラスターの不思議 2005年6月3日  横浜市立大学 国際総合科学部  基盤科学コース 野々瀬真司.
Materials Science and Engineering
HPLCにおける分離と特徴 ~逆相・順相について~ (主に逆相です)
好気呼吸 解糖系 クエン酸回路 水素伝達系.
緩衝作用.
塩を溶かした水溶液の液性.
福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
サフラニンとメチレンブルーの 酸化還元反応を利用
3)たんぱく質中に存在するアミノ酸のほとんどが(L-α-アミノ酸)である。
TTF骨格を配位子に用いた 分子性磁性体の開発 分子科学研究所 西條 純一.
原子核 atomic nucleus (陽子+中性子) 電子 electron e e- b線 陽子 proton H+
空孔の生成 反対の電荷を持つイオンとの安定な結合を切る必要がある 欠陥の生成はエンタルピーを増大させる
電気電子材料 電気電子工学科 2年次 鮫島俊之、飯村靖文.
平成18年度 構造有機化学 講義スライド テーマ:炭素陰イオン&二価炭素 奥野 恒久.
4.イオン結合と共有結合 セラミックスの結合様式 [定義] (1)イオン結合・・・
HE染色.
マントルゼノリス(マントル捕獲岩)からの推定:
セラミックス 第4回目 5月 7日(水)  担当教員:永山 勝久.
基礎無機化学 期末試験の説明と重要点リスト
酸性・アルカリ性を示すものの正体を調べよう。
物理化学III F 原道寛.
セラミックス 第6回目 5月 25日(火)  担当教員:永山 勝久.
有機バイオ材料化学 5. カルボニルの反応 5-1 アルデヒド・ケトンのその他の反応 5-2 カルボン酸やその誘導体の反応
有機バイオ材料化学 2. 様々なアルケンおよびアルキンの反応.
有機バイオ材料化学 6. ニトリルの反応 7. まとめ~多段階合成~.
常に強酸・強塩基から弱酸・弱塩基ができる方向。( )内はpKa
平成18年度 構造有機化学 講義スライド テーマ:炭素陽イオン 奥野 恒久.
物理システム工学科3年次 物性工学概論 第2回講義 火曜1限0035教室
2.地球を作る物質と化学組成 1)宇宙存在度と隕石 2)原始太陽系星雲でのプロセス:蒸発と凝縮
金属のイオン化傾向.
① 芳香族性と反芳香族性(Hückel則) 芳香族: π電子雲が4n+2個のπ電子を持つ Hückel則
平成30年度 教職員サマーセミナー  【教師も楽しむ理科実験】 酸性・アルカリ性.
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
分子軌道理論(Molecular Orbital theory, MO理論)
有機バイオ材料化学 5. カルボニルの反応 5-1 アルデヒド・ケトン.
平成30年度教員免許更新講習 小学校理科の実験講習 2.水溶液の性質.
学年   名列    名前 物理化学  第2章 1 Ver. 2.1 福井工業大学 原 道寛 HARA2005.
燃えるとはどんなことか.
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
物理システム工学科3年次 物性工学概論 第2回講義 火曜1限0023教室
化学1 第12回講義        玉置信之 反応速度、酸・塩基、酸化還元.
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
13族-遷移金属間化合物の熱電材料としての応用
セラミックス 第5回目 5月 14日(水)  担当教員:永山 勝久.
初期太陽系と初期地球の形成過程.
福井工業大学 原 道寛 学籍番号____ 氏名________
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
物質とエネルギーの変換 代謝 生物体を中心とした物質の変化      物質の合成、物質の分解 同化  複雑な物質を合成する反応 異化  物質を分解する反応 
好気呼吸 解糖系 クエン酸回路 電子伝達系.
中 和 反 応.
初期太陽系と初期地球の形成過程.
原子記号の復習 日本語→記号 記号→日本語   H.Kadoi.
好気呼吸 解糖系 クエン酸回路 電子伝達系.
有機バイオ材料化学 3. アルコールの反応.
学年   名列    名前 物理化学  第2章 1 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
Presentation transcript:

第6章 無機化学 6・1 単体の構造と物性 6・1・1 典型元素 [1族] どうしてHは分子性結晶で、Li、Na、・・・は金属結晶なの か? 6・1 単体の構造と物性 6・1・1 典型元素 [1族] どうしてHは分子性結晶で、Li、Na、・・・は金属結晶なの か? [2族] BeとMgがアルカリ土類金属とかなり異なった性質を示す。 [13族] B12:分子結晶。Al, Ga, In, Tl:金属。 [14族] CO2とSiO2の構造の違い。 なぜ、Pbはダイヤモンド構造をとらないか? なぜ、C、Siにはアモルファスが存在するか? [15族] なぜNは他の同族元素と異なるのか?(なぜP2、As2・・・ は無いのか?) [16族] なぜ、O8にならないか?(なぜS2、Se2、Te2・・は無いの か?) なぜ、S、Seにはアモルファスが存在するか? なぜOとSはらせん構造をとらないか?

b 遷移元素(3~11族元素) 主遷移元素 (n-1)d1~10ns0~2 3d 21Sc~29Cu 4d 39Y~47Ag 5d 72Hf~79Au 内遷移元素 (n-2)f0~14(n-1)s2(n-1)p6(n-1)d0~2ns2 4f 57La~71Lu (ランタノイド) 5f 89Ac~103Lr(アクチノイド) 3族 希土類元素 21Sc、39Y、57La~71Lu 4~7族 前期遷移元素 8~10族 26Fe~28Ni 鉄族元素、44Ru~46Pd、76Os~78Pt 白金族元素 ☆ 内遷移元素の特徴 ランタノイドは3価になることが多い。化学的性質は互いによく似ている。 アクチノイドはいずれも放射性元素であり、またNp以下は人工元素である。ThからPuまでは4価以上が安定、Am以降は3価が安定である。

◎陽イオンは有色のものが多い。典型元素の陽イオンはほとんど無色である。←dオービタルとs、pオービタルの違い。 ☆ 主遷移元素の特徴 ◎最外殻に存在する電子の数はほとんどの元素で2である。したがって、遷移元素の化学的性質は、原子番号が増加しても大きく変化しない(例えば、単原子イオンは2価の陽イオンが多い)。 ◎陽イオンは有色のものが多い。典型元素の陽イオンはほとんど無色である。←dオービタルとs、pオービタルの違い。 4 5 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu 3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 Y Zr Nb Mo Tc Ru Rh Pd Ag 4d15s2 4d25s2 4d45s1 4d55s1 4d55s2 4d75s1 4d85s1 4d105s0 4d105s1 La Hf Ta W Re Os Ir Pt Au 5d16s2 4f145d26s2 4f145d36s2 4f145d46s2 4f145d56s2 4f145d66s2 4f145d76s2 4f145d106s0 4f145d106s1

6・2 酸と塩基 6・2・1 酸・塩基の定義 酸と塩基については現在二通りの考え方がある。一つは Brønsted-Lowry説で、もうひとつの定義はLewis説である。 Brønsted-Lowry説によれば、「酸とはプロトン供与体であり、塩 基とはプロトン受容体である」、と定義される。 この定義に基づく酸と塩基をそれぞれBrønsted酸、Brønsted塩基 と呼ぶ。この場合、中和は酸から塩基へのプロトン移動である。 Brønsted-Lowryの定義をArrheniusのそれと比較して、水溶液中に 限定していないこと、および塩基の表現が大きく変わったことが 注目に値する。 しかし、水素を含んでいないものは永久に酸とは見なされない という欠点がなお残されていた。

Lewis説では、「酸とは電子対受容体であり、塩基とは電子対供 与体である」、と定義される。この定義に基づく酸と塩基をそれ ぞれLewis酸、Lewis塩基と呼ぶ。 Lewis塩基は非共有電子対またはπ電子系を持っており、Lewis酸 は多くの金属イオンのように空のオービタルに電子対を受け入れ るものである。 Lewisの定義では、プロトンの源を持たない物質も酸・塩基であ り得る。例えば、 Na2O+SO3 → 2Na++SO42- という反応では、SO3はO2-イオンの電子対を受け入れるから酸で あり、O2-イオンは塩基である。

6・2・2 硬い酸と軟らかい酸、硬い塩基と軟らかい塩基 Lewis酸塩基はそれぞれ二種類に大別して考えると便利であるこ とが分かってきた。それは硬い酸と軟らかい酸、硬い塩基と軟ら かい塩基である(HSAB)。 硬い酸とか硬い塩基は反応中心の電荷や非共有電子対が反応中 心に強く局在していて、分極率の小さい(電子雲がひずみづらい、 つまり硬い)ものをいい、軟らかい酸とか軟らかい塩基というの は電荷や非共有電子対が比較的非局在化していて分極率の高いも のをいう。 この分類によれば、硬い酸は硬い塩基と反応してより安定な塩 を作り、また軟らかい酸は軟らかい塩基と反応してより安定な塩 を作る。

アルミニウムイオンは Al3++4F- = AlF4- のようにフッ化物イオンとはよく反応するが、臭化物イオンやヨ ウ化物イオンとはほとんど反応せず、アルミニウムイオンに対す る親和力の順は次のようになる。 F->Cl->Br->I- 水銀(Ⅱ)イオンは Hg2++4I- = HgI42- のようにヨウ化物イオンとはよく反応するが、フッ化物イオンと はあまりよく反応せず、水銀(Ⅱ)イオンに対する親和力はアルミニ ウムイオンとは全く逆である。 F-<Cl-<Br-<I-

アルミニウムイオンのようなイオンは、酸素と硫黄に対して O>S のような親和力の順になり、水酸化物イオンとは反応して水酸化 物の沈殿を生成するが、硫化物イオンとはほとんど反応せず、難 溶性の硫化物を与えない。 一方、水銀イオンはアルミニウムイオンとは逆に O<S のような親和力に順になり、水酸化物も沈殿するが、極めて難溶 性の硫化物を沈殿する。

アルミニウムイオンはイオン半径が小さくて、電荷が高く(すなわち電荷密度が高い)、原子番号が小さいから電子数が少ないため電子分極率が小さいのに対して、水銀(Ⅱ)イオンはイオン半径が大きくて、電荷密度がアルミニウムイオンに比して小さく、電子分極率が大きい。 アルミニウムイオンのようなイオンを感覚的に硬いLewis酸と称するのに対して、水銀(Ⅱ)イオンは柔らかいLewis酸と称される。 ◎ 硬いLewis酸は硬いLewis塩基と反応して、イオン結合性の化合物を生成する。 ◎ 柔らかいLewis酸は柔らかいLewis塩基と反応して共有結合性の生成物を与える。 ◎ 硬い酸と柔らかい塩基、柔らかい酸と硬い塩基の間には強固な結合が形成されない。 という基準だけで無機のみならず、有機の反応の進行を予想することができる。このような考え方を酸と塩基の硬さと柔らかさ(HSAB)の原理という。

水素イオンは極めて硬いLewis酸である。ハロゲン化物イオンが 硬いほど水素イオンと強い結合を形成するので、酸として強さは 弱くなる。酸としての強さの順はHI>HBr>HCl>HF。 天然においてもHSABの実例が見られる。 硬いLewis酸のNa+、K+、Ca2+、Mg2+、Si4+、Al3+、Ti4+は酸素と結 合してケイ酸塩岩石の主成分をなしている(親石元素)が、これ らは決して硫化鉱床の鉱石の主成分になることはなく、定性分析 でどの様な条件でも硫化物の沈殿を生成することはない。 硫化物として硫化鉱床に産するCu2+、Pb2+、Zn2+、Ni2+、Co2+な ど(親銅元素)はいずれも柔らかいないしは中間のLewis酸で、こ れらは決してケイ酸塩岩石や炭酸塩岩石の主成分をなすことはな い。これらの金属イオンは定性分析で酸性あるいはアルカリ性で 硫化物の沈殿を与える。 9c. 反応物質の電子状態及びそれに起因する性質(分極率など)は、化学反応に関して重要な情報(反応性と反応機構)を与える。

☆ 有機電子論とHSAB 求核試薬はLewis塩基であり、また求核試薬が攻撃目標にする相手の物質は、Lewis酸である。 求電子試薬はLewis酸であり、また求電子試薬が攻撃目標にする相手の物質は、Lewis塩基である。 《化学実験・有機:アセチル化の反応機構》カルボニル基に対する求核反応。アニリンなどはLewis塩基である。 求電子反応の例としてエチレンのへの塩化水素の付加をとりあげる。このとき求電子試薬(Lewis酸)はプロトンであるが、これがLewis塩基に属するエチレン(Lewis塩基)のπ電子を攻撃する。

6・2・3 イオン化エネルギーと還元力 イオン化エネルギーは陽性元素の(特に気相における)反応性 (還元性)を考えるときの目安となる。9c 1族と2族の元素のイオン化エネルギー/kJ mol-1 第一 第一 第二 Li 513.3 Be 899.4 1757.1 Na 495.8 Mg 737.7 1450.7 K 418.8 Ca 589.7 1145 Rb 403.0 Sr 549.5 1064.2 Cs 375.5 Ba 502.8 965.1 アルカリ金属の反応性はイオン化エネルギーの値から予想され るようにLi<Na<K<Rb<Csである。 アルカリ土類金属は空気中で酸素と速やかに反応し、水と常温 で反応して水素を発生するが、マグネシウムは熱水と穏やかに反 応し、ベリリウムは熱水とも反応しない。 BeCl2 とCaCl2では前者はかなり共有結合性が高く、後者はイオ ン結合性が高い。2・3参照。

同周期の典型元素のイオン化エネルギーI /kJ mol-1 Li Be B C N O F Ne I 513. 3 899. 4 800 同周期の典型元素のイオン化エネルギーI /kJ mol-1 Li Be B C N O F Ne I 513.3 899.4 800.6 1086.2 1402.3 1313.9 1681 2080.6 Na Mg Al Si P S Cl Ar I 495.8 737.7 577.4 786.5 1011.7 999.6 1251.1 1520.4 同周期の典型元素のイオン化エネルギーを比較すると、ほぼ原子番号の増加とともに大きくなっている(2・1・2a参照)。 遷移金属元素のイオン化エネルギー I /kJ mol-1 Sc Ti V Cr Mn Fe Co Ni Cu 第一I 618 643 637 640 703 744 743 722 730 第二I 1209 1283 1384 1559 1478 1529 1612 1717 1917 遷移金属では原子番号の増加とともに内殻に電子が受容されるので、全体としてイオン化エネルギーの変化が小さく、遷移金属の気相における反応性の差はあまり大きくない。レジメp.27スライド4参照。

6・2・4 酸塩基反応と酸化還元反応 Lewisの定義によれば、酸塩基反応とは酸(電子対受容体)が塩 基(電子対供与体)の持つ孤立電子対を塩基と共有して共有結合 性の化合物を生成する反応ということになる。 一方、酸化還元反応とは、酸化剤が還元剤の電子を受け取るこ とによって、両者が電子を共有することなく、完全に一方から他 方へ電子が移行する反応である。 電子の動きに着目すると、酸塩基反応と酸化還元反応の間にあ る共通性が見いだされる。すなわち、酸と酸化剤、塩基と還元剤 との間にはある共通性があり、実際に、同じ化学種が酸として反 応するときと酸化剤として反応するときがある。

例えば、反応 H++NH3 → NH4+ (酸塩基反応) 2H++Zn → H2+Zn2+ (酸化還元反応) では、H+は電子に乏しい状態にあり、NH3の持つ孤立電子対を受 け取り共有することによって塩を作ったり(酸塩基反応)、Znの 持つ電子を1個受け取って中性原子を経て単体分子なったり(酸化 還元反応)する。 4I-+Hg2+ → [HgI4]2- (酸塩基反応) 2I-+Cl2 → I2+2Cl- (酸化還元反応) の例では同じ化学種が塩基または還元剤として反応している。ま た S2-+2H2O → H2S+2OH- (酸塩基反応) S2-+2Fe3+ → S+2Fe2+ (酸化還元反応) の場合には、電子供与体としての塩基または還元剤から電子受容 体としての酸または酸化剤に電子が移動する。しかし、酸塩基反 応では構成原子に酸化数の変化はない。

一般に、電子受容体をA、電子供与体をDで表すと、酸塩基反応 と酸化還元反応を 酸塩基反応 A+D → A-D 酸化還元反応 A+D → A-+D+ のように書くことができる。 酸塩基反応では、AとDの間に新しく配位結合が形成され、反応 を推進する駆動力は本質的にA-D結合の強さである。 これに対し、酸化還元反応は、 A+e- → A- D →D++e- の二段階に分けて考えることができる。すなわち、Aの電子受容反 応(還元)とDの電子供与反応(酸化)との組み合わせから成って いる。気相では、電子供与体(還元剤)のイオン化エネルギーが 小さいほど、また電子受容体(酸化剤)の電子親和力が大きいほ ど、反応は右に進む。従って、電子親和力が大きいほどAは強い酸 化剤であり、イオン化エネルギーが小さいほどDは強い還元剤であ る。