統計学  西 山.

Slides:



Advertisements
Similar presentations
数理統計学 西 山. 前回のポイント<ルート N の法則> 1. データ(サンプル)の合計値 正規分布をあてはめる ルート N をかけて標準偏差を求める 2. データ(サンプル)の平均値 正規分布を当てはめる 定理8がポイント ルート N で割って標準偏差を求める.
Advertisements

1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
統計解析第 11 回 第 15 章 有意性検定. 今日学ぶこと 仮説の設定 – 帰無仮説、対立仮説 検定 – 棄却域、有意水準 – 片側検定、両側検定 過誤 – 第 1 種の過誤、第 2 種の過誤、検出力.
第6回 適合度の検定 問題例1 サイコロを 60 回振って、各目の出た度数は次の通りであった。 目の出方は一様と考えてよいか。 サイコロの目 (i) 観測度数 : 実験値 (O i ) 帰無仮説:サイコロの目は一様に出る =>それぞれの目の出る確率 p.
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
統計学 西山. 平均と分散の標本分布 指定した値は μ = 170 、 σ 2 = 10 2 、データ数は 5 個で反復 不偏性 母分散に対して バイアスを含む 正規分布カイ二乗分布.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
4. 統計的検定 ( ダイジェスト版 ) 保健統計 2014 年度. Ⅰ 仮説検定の考え方 次のような問題を考える。 2014 年のセンター試験、英語の平均点は 119 点であった。 T 高校では 3 年生全員がセンター試験を受験したが、受験生の中から 25 人を選んで調査したところ、その平均点は.
Wilcoxon の順位和検定 理論生態学研究室 山田 歩. 使用場面 2 標本 離散型分布 連続型分布(母集団が正規分布でない時など 効果的) ただパラメトリックな手法が使える条件がそ ろっている時に、ノンパラメトリックな手法 を用いると検出力(対立仮説が正しいときに 帰無仮説を棄却できる確率)が低下するとい.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4章 統計的検定 統計学 2007年度.
第4回 関連2群と一標本t検定 問題例1 6人の高血圧の患者に降圧剤(A薬)を投与し、前後の収縮期血圧 を測定した結果である。
数理統計学  第9回 西山.
統計的仮説検定の手順と用語の説明 代表的な統計的仮説検定ー標準正規分布を用いた検定、t分布を用いた検定、無相関検定、カイ二乗検定の説明
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
      仮説と検定.
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
データ分析入門(11) 第11章 平均値の差の検定 廣野元久.
数理統計学 西 山.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
ホーエル『初等統計学』 第8章1節~3節 仮説の検定(1)
第1章 統計学の準備 ー 計量経済学 ー.
検定 P.137.
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
統計学  第7回 西 山.
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
臨界値の算出法(Excelの場合) =normsinv( 確率 ) 下側累積確率Pr(z≦z0)に対応するz値
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
第6章 2つの平均値を比較する 2つの平均値を比較する方法の説明    独立な2群の平均値差の検定   対応のある2群の平均値差の検定.
確率・統計Ⅱ 第7回.
統計学勉強会 対応のあるt検定 理論生態学研究室 3年 新藤 茜.
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
母分散が既知あるいは大標本の 平均に関する統計的検定
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学  第6回 西山.
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
対応のあるデータの時のt検定 重さの測定値(g) 例:
数理統計学 第11回 西 山.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
Excelによる実験計画法演習 小木哲朗.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
統計学 西 山.
確率と統計 年1月12日(木)講義資料B Version 4.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
数理統計学 西 山.
1.母平均の検定:小標本場合 2.母集団平均の差の検定
母分散の検定 母分散の比の検定 カイ2乗分布の応用
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
確率と統計2009 第12日目(A).
統計的検定   1.検定の考え方 2.母集団平均の検定.
母分散の検定 母分散の比の検定 カイ2乗分布の応用
第4章 統計的検定 (その2) 統計学 2006年度.
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
統計学  第9回 西 山.
数理統計学 西 山.
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
数理統計学  第12回 西 山.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
確率と統計 年12月16日(木) Version 3.
確率と統計 年1月7日(木) Version 3.
Presentation transcript:

統計学  西 山

Ⅰ限ここまで 7/9 例題【2】 正常なブレーキなら時速40KMから急ブレーキをかけたとき40メートルで止まれるはずとする。甘くなっていたブレーキを修理して試したところ 41.8, 41.6, 41.1, 39.1, 39.2, 39.8, 40.7, 41.0, 40.6, 43.1 という結果になった(単位:メートル)。 「ブレーキは正常」それとも「ブレーキは甘い!」 ヒント: 標本平均=40.8 不偏分散=1.483

どんなT値を異常と判定する? 対立仮説(H1)による 甘いと判定する? 正常 異常 要注意は 高すぎるT値だけ

Ⅱ限ここまで 7/9 <片側検定>と呼びます 限界値 このT値は大きすぎる ブレーキは甘いようだ 正常 異常

標準値(T値)で限界値を決める点が勘どころ 検定は二択問題です 帰無仮説(仮置き) 対立仮説(異常状態) ブレーキは正常 vs ブレーキは正常でない ブレーキは正常 vs ブレーキは甘い <片側検定> ブレーキは正常 vs ブレーキがききすぎる <同じ> 血圧は正常 vs 高血圧! 運転技術は十分 vs まだ未熟 得点は合格 vs 得点は不合格 片側検定 標準値(T値)で限界値を決める点が勘どころ

ここまでが、検定の第一段階。第二段階があります。 検定の手順 有意水準を決める(5%、10%、1%) 棄却域の設定: 両側か、片側か(右側か、左側か) 帰無仮説の母平均(μ)を前提する サンプル結果をT値に直す。標準誤差が確定であれ ば標準値(Z値)。 T値が棄却域に入るか?入れば棄却(結果異常)、入 らなければ採択(結果正常)。 ここまでが、検定の第一段階。第二段階があります。

統計的仮説検定の要点 検定とは二択問題です.つまり二つの命題のど ちらかをデータをみて選びます. 正しいと仮定する命題を帰無仮説と呼び、もう一 方の命題を対立仮説と呼びます. 母平均を仮置きする値が帰無仮説です。 サンプル平均が棄却域に入れば帰無仮説は棄 却できます。棄却域は、普通、5%分もうけます。

この問題 省略 【例題】棄却域の作り方がポイント あるメーカーの新型電池は耐久時間を1000時間と表示している。最近、「すぐ切れる」というクレームが相次いで寄せられた。そのため、20個のサンプルをとって、計測してみると、以下の結果になった。 電池の生産に異常はないと言えるか? このようなサンプルは 頻繁に出ますか?

検定を二択にする 帰無仮説 (正常) 1000と仮定! 対立仮説 (短い)

【考え方】寿命が長すぎても問題なし 帰無仮説(=仮置き値): μ=1000時間 有意水準 5% 限界値 正常 95% 異常 5% 1000

【解答】 分散未知なので限界値はT分布で このサンプルは偶然ではない 有意!

検定の第2段階 検定ミス(=判断ミス)の可能性を調べます。 第1種の過誤 第2種の過誤 検出力(=異常を発見できる確率) これが Ⅱ限 Ⅰ限のテーマ 7/16 Ⅱ限 7/23のテーマ 検定の第2段階 検定ミス(=判断ミス)の可能性を調べます。 第1種の過誤 第2種の過誤 検出力(=異常を発見できる確率)

【例題】: 5台検査体制の信頼度 無作為に5台の自動車を抜き取りブレーキ性能検 査をする.60Km/hからの停止距離の基準は60メー トルである. いま工場内に異常があり、停止距離が平均で2メー トルも基準値を超えている。ブレーキ検査をして、こ の異常に気がつくだろうか?但し、ブレーキを踏む タイミングなどから、停止距離の測定値は2メートル の標準偏差でばらつく. 正常 異常 教科書176ページ以降を参照

例題【2】の考え方 分散既知 ⇒ 正規分布が使える 例題【2】の考え方 分散既知 ⇒ 正規分布が使える この限界値は61.47です.なぜ?

判断ミスに二通りあり 検査結果 正常 異常 真 相 正常(H0) あいまい 異常(H1) 検出 第1種の過誤(α) 第2種の過誤(β) 必要のない検査をした意味では生産者危険 欠陥車に気がつかないので消費者危険 検査結果 正常 異常 真 相 正常(H0) あいまい 第1種の過誤(α) 異常(H1) 第2種の過誤(β) 検出

例題【2】の解答 検出力=1-0.29=0.71 10回に3回は異常に気がつかない!

例題に関するクイズ 無作為に5台の自動車を抜き取りブレーキ性能検査をする. 60Km/hからの停止距離の基準は60メートルになっている.5 回の測定値の結果は 59.3、 59.6、 62.7、 62.7、 62.3 となった。以下の検定を行いなさい。但し、ブレーキを踏むタイ ミングなどから、停止距離の測定値は2メートルの標準偏差で ばらつく. 正常 異常 どんな結果は異常と決めましたか?

クイズの解答 異常なしと仮定して 限界値1.645を超えていないので、結果正常 検出漏れの確率は30%

どんな判断ミスが 心配? 検査結果 正常 異常 真 相 正常(H0) あいまい 異常(H1) 検出 第1種の過誤(α) 第2種の過誤(β) Ⅰ限ここまで 7/16 検査結果 正常 異常 真 相 正常(H0) あいまい 第1種の過誤(α) 異常(H1) 第2種の過誤(β) 検出

【練習問題】 ―第3章から― 中心極限定理 正常なサイコロを20回振って出る目の数を平均した値は、概ねどのような確率分布に従うか?分布図を描き、その平均と標準偏差を書き入れなさい。 母集団

【練習問題】 ―第4章<推定> 標準偏差=標準誤差 【練習問題】 ―第4章<推定> 標準偏差=標準誤差 ランダムに9人(日本人)をとって身長のデータをとると、以下のようになった。 日本人全体の平均身長はどの位だと推定されますか?