電池の化学 電池とは化学反応によってエネルギーを 直接に(直流)電力に変換する装置 どんな化学反応か? 酸化還元反応 電流が 流れる 電流が

Slides:



Advertisements
Similar presentations
身近な化学2009 総集編 これまでの授業を振り返ります。 しっかりと復習しましょう!! START CONTUNUE.
Advertisements

燃料電池、太陽光発電の原 理の現状と問題点の調査 2S12 番 谷藤隆彦 2 S08 番 澤田紘志 監修 木下祥次 エネルギ変換工学 第 11 回講義資 料.
蓄電のひみつ 小学校6年 電気の利用 授業2ー 3. 電気はためることができる 手回し発電機を回す回数を増やすと、 ためられる電気の量は増える ためられる電気の量には限りがある 1学習のふりかえりと今日の授業 コンデンサーは どこで使用されているのか探ろ う (C) 一般社団法人 日本電機工業会 本資料の無断での引用・転載・複製を禁.
教養の化学 第7週:2013年11月4日  担当  杉本昭子.
科学のおもしろさの中から省エネを考えよう!
原子のはなし 陽子の数 「核力」という 「強い力」で結びついてる クーロン力という電気的な引き合い(弱い力)で結びついている
市民とともに学ぶ色素増感太陽電池 川村康文,田山朋子,兒玉明典 Journal of the Japan Institute of Energy(2012) 東京理科大学 川村研究室 石黒 貴裕.
銅の電気精錬 (1)陽極 Cu→Cu2++2e- (粗銅中の銅) (2)陰極 Cu2++2e-→Cu.
銀染色 (Gitter / 渡辺の鍍銀法).
酸化還元反応.
水の話 水分子の特徴 小さい分子なのに常温で液体 水(液体)から氷(固体)になると 体積が大きくなる。 電気陰性度が大きい原子は 分極
水の話 水分子の特徴 水分子は分極している 常温で液体である NH3やCH4と比較して沸点高い 水から氷になると 体積が大きくなる
無機物質 金属元素 「金属イオンの分離」 3種類の金属イオン      をあてよう! 実験プリント 実験カード.
高炉(溶鉱炉)の構造 ① 3Fe2O3+CO →2Fe3O4+CO2 ② Fe3O4+CO →3FeO+CO2 ③ FeO+CO →Fe(銑鉄)+CO2 まとめると、 ①+2×②+6×③ Fe2O3+3CO →2Fe(銑鉄)+3CO2.
過マンガン酸カリウムと過酸化水素の反応 1.過マンガン酸イオンの反応式 MnO4-+8H++5e- → Mn2++4H2O -① (赤紫色) (無色) 2.過酸化水素の反応式 H2O2 → O2+2H++2e- -② (酸素発生) 3.①×2+②×5 2MnO4-+6H++5H2O2 → 2Mn2++8H2O+5O2.
e-nuvo BMS リチウムオン電池実験キット 特徴 用途 仕様 価格(税別)
色素増感太陽電池におけるフィルム 電極の2.45GHzマイクロ波焼成
金箔にα線を照射して 通過するα線の軌跡を調べた ラザフォードの実験 ほとんどのα線は通過 小さい確率ながら跳ね返ったり、
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
本時の目標 エネルギーを有効に活用するにはエネルギー変換効率を髙める必要があることを知る。
本時の目標 電気エネルギーの変換のしくみを理解し、適切な利用方法が選択できる。
Copyright (C) Siam Bee Technologies 2015
アンモニア(アミン類) 配位結合:結合を形成する2つの原子の一方からのみ結合電子が分子軌道に提供される化学結合。
鉛蓄電池 /13.
固体電解コンデンサの耐電圧と漏れ電流 -アノード酸化皮膜の表面欠陥とカソード材料の接触界面-
リチウム二次電池正極劣化の機構解明と抑制
身近な化学2010 総集編 これまでの授業を振り返ります。 しっかりと復習しましょう!! START CONTUNUE.
塩化銅(Ⅱ)CuCl2水溶液の電気分解 (1)陰極で銅が析出 陰極:還元反応 Cu2+ + 2e- → Cu (2)陽極で塩素が発生 陽極:酸化反応 2Cl- → Cl2 + 2e-
サフラニンとメチレンブルーの 酸化還元反応を利用
酸、アルカリとイオン 酸性、中性、アルカリ性とは?.
環境材料工学科って どんな学科? *画面をクリックすると進んでいきます*
化学変化とイオン ・「イオン」って何だろう? ・・・・アルカリイオン飲料 ・・・・マイナスイオンで健康に ・「化学変化」とはどういう関係?
3.いろいろな気体.
酸・アルカリのイオンの移動 やまぐち総合教育支援センター                          森 田 成 寿.
電池の化学 電池とは化学反応によってエネルギーを 直接に(直流)電力に変換する装置 燃焼: 化学反応 → 熱エネルギー 電池: 化学反応
金属使用の歴史 ●優れた材料: 強度が高くて、一定の形を作るのが容易 ●有史以前の単体金属: 金、銀、銅、鉄、錫、鉛、水銀
物理学(電磁気学) 第12回 電流と磁場.
酸性・アルカリ性を示すものの正体を調べよう。
物質の変化を粒子で考えよう メニュー:1~5の番号をクリックしよう 1 化学変化 すべての物質は粒子からできている。
ボルタ電池 (-)Zn|H2SO4aq|Cu(+)
●電極での化学変化 電子が移動するから 電子が移動するから 電流が流れる! 電流が流れる! 水素原子が 2個結びつく
第8回  論理ゲートの中身と性質 論理ゲートについて,以下を理解する 内部構成 遅延時間,消費エネルギー 電圧・電流特性 瀬戸.
早稲田大学理工学部 コンピュータネットワーク工学科 山崎研B4 大野遙平
酸化と還元.
色素増感太陽電池を作って 発電実験をしてみよう ーSPPでの授業実践を通してー
H E 燃料電池応用の調査 O 発表者 脇田悠司 田中甲太郎 松本芳郎 担当教官 廉田 浩.
電力 P ( Power ) 単位 ワット W = J / sec
平成18年度 構造有機化学 講義スライド テーマ:炭素陽イオン 奥野 恒久.
電気回路学 Electric Circuits 情報コース4セメ開講 供給電力最大の法則 山田 博仁.
金属のイオン化傾向.
平成30年度 教職員サマーセミナー  【教師も楽しむ理科実験】 酸性・アルカリ性.
平成30年7月7日 平成30年度 宇都宮大学教員免許状更新講習  【中学校理科の実験講習】 ボルタ電池、備長炭電池.
使い捨て乾電池と充電池どっちがお得なのか!?
<燃料電池車の現状と今後> May 7th, 2003 飯塚、大矢、加藤、深井
超低コスト型色素増感太陽電池 非白金対極を使用 色素増感太陽電池 Dye-sensitized solar cells (DSSCs)
電気分解の原理.
平成30年度教員免許更新講習 小学校理科の実験講習 2.水溶液の性質.
液中通電法を用いたAu, Pt, Pdナノ粒子の作成
化学1 第12回講義        玉置信之 反応速度、酸・塩基、酸化還元.
永久磁石を用いた高出力マイクロ波 放電型イオン源の開発
廃PVC中有害金属の 最適な処理方法の評価
ねらい わたしたちが利用している電源の種類を知り、どのように使い分ければよいかを考える。
色素増感太陽電池を作って発電実験をしてみよう ーSPPでの授業実践を通してー 川村 康文 「遺伝 2005年11月号」掲載
電子システム専攻2年 遠藤圭斗 指導教官 木下祥次 教授
直接通電による抵抗発熱を利用した 金属粉末の半溶融焼結
ものづくりの進め方 ねらい ものづくりの工夫と進め方を知る。.
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
電源の内部インピーダンス(抵抗)とは? 乾電池(1.5V)の等価回路を描いてみよう もし、等価回路がこのようなら、
絶縁体を電気が流れる磁石に ―情報記憶容量の大幅向上に新たな道― 北海道大学 電子科学研究所 教授 太田裕道 POINT
おもちゃ修理講座 北区おもちゃ病院 ドクター 市原正樹  山田栄二  三輪 昌  .
Presentation transcript:

電池の化学 電池とは化学反応によってエネルギーを 直接に(直流)電力に変換する装置 どんな化学反応か? 酸化還元反応 電流が 流れる 電流が    直接に(直流)電力に変換する装置 どんな化学反応か? 酸化還元反応 電流が 流れる 電流が 流れる

化学電池の構造 正極:還元反応(電子を受け取る)をする化合物 負極:酸化反応(電子を出す)をする化合物 電解液:負極と正極をつなぎイオンを伝え、       酸化還元反応を起こす 電流が 流れる 電流が 流れる

化学電池 実用電池は正極、負極に使う化合物、電解液に使う化合物を工夫して電気が効率的に流れるように開発したもの 正極 負極 電解液 マンガン電池 二酸化マンガン 亜鉛 塩化アンモニウム アルカリ電池 二酸化マンガン 亜鉛 水酸化カリウム 二酸化マンガン 亜鉛 水酸化カリウム オキシライド   電池 + オキシ水酸化ニッケル 二酸化マンガン 亜鉛 水酸化カリウム EVOLTA (アルカリ電池) + オキシ水酸化チタン

電池の種類 一次電池:繰り返し使用しない電池 二次電池:充電して繰り返し使用可能な電池 マンガン電池・アルカリ電池など 鉛蓄電池・ニッケル水素電池・リチウムイオン電池など

二次電池 構造的特徴 正極と負極の接する面積を大きくすることで 効率のよい充電・放電をさせる。 一次電池 (マンガン電池) 二次電池(ニッカド電池)

2次電池 正極 負極 電解液 アルカリ電池 二酸化マンガン 亜鉛 水酸化カリウム 水酸化 ニッケル 水酸化 カドミウム 水酸化カリウム ニカド電池 ニッケル水素 電池 水酸化 ニッケル 水素 吸蔵合金 水酸化カリウム

ニッケル-水素電池 ニッケル-水素電池の特徴:安全 ハイブリットカーのバッテリー 繰り返し使える乾電池

リチウムイオン電池:最も多く使われている電池 負極にリチウムを用いる リチウム: 原子の大きさが小さい(水素、ヘリウムの次) イオン化傾向が一番大きい(酸化反応をしやすい) 同じ大きさでたくさんの電気をためることが出来る → 小型化が可能

乾電池と環境問題 乾電池:比較的安価で環境負荷も低い金属を 用いている(Mn、Zn) 積極的なリサイクルはせず、不燃ゴミとして 環境影響がないように処分 しかし、3つのRの観点から: リデュース:より長持ちのアルカリ電池の使用 EVOLTAのような長寿命型電池 リユース:使い切りではなく、       何度も使える乾電池型充電池の利用 エネループのような乾電池型ニッケル水素電池

二次電池と環境問題 二次電池:環境負荷が高い金属(Cd、Pb)        希少金属(Li、水素吸蔵合金) リサイクルで省資源・環境負荷低減