系外惑星系TrES-1におけるRossiter効果の検出可能性と その観測意義

Slides:



Advertisements
Similar presentations
火星の気象と気候 2004 年 11 月 10 日 小高 正嗣北海道大学 地球惑星科学専攻. 講義の概要 太陽系の惑星概観 太陽系の惑星概観 地球型惑星と木星型惑星 地球型惑星と木星型惑星 地球と火星の比較 地球と火星の比較 火星の気象と気候 火星の気象と気候 探査衛星による最新の気象画像 探査衛星による最新の気象画像.
Advertisements

スイングバイを行う惑星 探査機軌道の再現 B 上杉耕玄. 目的・研究概要 スイングバイを再現するために 3 次元の運動方程式を ルンゲクッタを用いて解き, 精密な太陽系シミュレー タを作成した. 各惑星とパイオニア 10 号の初期位置と初期速度を打 ち上げの 1 ヶ月後,6 ヶ月後, スイングバイの.
多面体の画面への投影 ケプラーの太陽系モデルとミウラ折 り 宇宙物理・数理科学研究室 情報システム学科 B 奥野駿哉.
系外惑星系 TrES-1 における Rossiter 効果の検出可能性と その観測意義 東京大学大学院 理学系研究科 成田憲保 共同研究者 太田泰弘、樽家篤史、須藤靖 (東京大学) Joshua N. Winn ( Harvard-Smithsonian Center ) Edwin L. Turner.
太陽系外地球型惑星の 発見に向けたロードマップ 成田 憲保. 目次: 地球型惑星の発見に向けて 1. これまでに何がわかったか? 2. 今何をやろうとしているのか? 3. 将来何がどこまでわかるのか?
系外惑星系セミナー速報 Balmer line features of HD 東京大学大学院 理学系研究科宇宙理論研究室(須藤研)修士1年 成田憲保.
YohkohからSolar-Bに向けての粒子加速
国立天文台 光赤外研究部 太陽系外惑星探査プロジェクト室 成田憲保
日本トランジット観測ネットワークによる Transit Timing Variationの探索
TMT可視分光観測のサイエンス <太陽系外惑星の光と影の観測>
Spectroscopic Studies of Transiting Planetary Systems
国立天文台 定例観望会 2007年4月13日(金) 担当 高梨 直紘
すばる望遠鏡・高分散分光器を用いた系外惑星HD209458bの大気吸収探索
国立天文台 太陽系外惑星探査プロジェクト室 成田憲保
HETE-2のバースト観測ネットワーク マウイ 副地上局 パラオ 副地上局 シンガポール 主・副地上局 赤道
国立天文台 光赤外研究部 太陽系外惑星探査プロジェクト室 成田憲保
日食直前講習会 ~太陽と月のコラボレーション~ 携帯電話のカメラで撮った月(ここの屋上の望遠鏡にて) 安全に、楽しく日食を見るために
軌道が傾いた系外惑星は意外と多い: ロシター効果の観測と惑星移動理論への示唆
科学概論 2004年12月9日
小惑星を探れ! 村仲 渉 (木曽高校)  杉本 寛 (上宮高校)  佐藤 駿 (オイスカ高校)  鈴木 寿弥 (磐田南高校) 池内 苑子 (大宮高校)  吉川 優衣 (広島国泰寺高校)  斎藤 杏奈 (洗足学園高校)  §1.はじめに ②太陽から小惑星までの距離 小惑星の軌道は円と仮定する。小惑星の軌道半径をaA、周期をTA、地球の軌道半径をaE、周期をTEとすると、時間tでの小惑星の移動距離dA、地球の移動距離dEは、
国立天文台・太陽系外惑星探査プロジェクト室 成田憲保
謎の惑星スーパーアースを探れ! 国立天文台・成田憲保.
天体の諸階層1 太陽系 Solar system.
すばる観測体験企画参加者向け 惑星軌道進化の理論と観測的検証の研究資料
トランジット法による低温度星まわりの地球型惑星探索と大気調査
岡山188cm望遠鏡ISLEによる 系外惑星トランジット観測の性能評価 成田憲保 (国立天文台).
東京大学大学院 宇宙理論研究室 成田 憲保(なりた のりお)
北海道大学 理学部 地球科学科 惑星宇宙グループ 高橋康人
宇宙物理II(9) Planetary Formation
すばる望遠鏡を用いた 太陽系外惑星系の観測的研究
Transmission Spectroscopy and the Rossiter-McLaughlin Effect
系外惑星系セミナー速報 Balmer line features of HD209458
銀河物理学特論 I: 講義1-4:銀河の力学構造 銀河の速度構造、サイズ、明るさの間の関係。 Spiral – Tully-Fisher 関係 Elliptical – Fundamental Plane 2009/06/08.
系外惑星大気の研究最前線 最新の研究会より
成田 憲保 国立天文台・太陽系外惑星探査プロジェクト室
国立天文台 光赤外研究部 太陽系外惑星探査プロジェクト室 成田憲保
系外惑星探査の現在 2003年天文・天体若手夏の学校 成田 憲保
太陽系外惑星の トランジット観測 和歌山大学  教育学部  自然環境教育課程   地球環境プログラム  天文学ゼミ   玉置 順大.
UMiわい小銀河の赤色巨星 すばるHDSによる観測 (2001-2004) 定金晃三(大阪教育大)
トランジット惑星系TrES-1での Rossiter-McLaughlin効果の観測結果
大離心率トランジット惑星HD17156bの ロシター効果の観測結果
大離心率トランジット惑星HD17156bの 公転軌道傾斜角の測定
天体の諸階層1 太陽系 Solar system.
ANIRによるM型星まわりの トランジット地球型惑星の観測 国立天文台 成田憲保.
星間物理学 講義1: 銀河系の星間空間の世界 太陽系近傍から銀河系全体への概観 星間空間の構成要素
論文紹介 Type IIn supernovae at redshift Z ≒ 2 from archival data (Cooke et al. 2009) 九州大学  坂根 悠介.
ガンマ線バースト観測用 面分光装置の紹介 岡山天体物理観測所 尾崎忍夫 共同研究者 吉田、岩田、神戸、沖田(岡山天体物理観測所)、
東邦大学理学部物理学科 宇宙・素粒子教室 上村 洸太
小型JASMINE計画の状況       矢野太平(国立天文台)       丹羽佳人(京大).
ガンマ線連星 LS I 放射モデル 2009/12/14 永江 修(広島大学).
倉本研究室 宇宙理学専攻 修士1年 岡澤直也.
低温度星まわりの生命居住可能惑星における 植物特性の考察とその観測に向けて
Uncovering the Migration History of Giant Exoplanets
下降流(Downflow)の観測と磁気リコネクション
星間物理学 講義1の図など資料: 空間スケールを把握する。 太陽系近傍から 銀河系全体への概観、 観測事実に基づいて太陽系の周りの様子、銀河系全体の様子を概観する。それぞれの観測事実についての理解はこれ以降の講義で深める。 2010/10/05.
ESS-II報告: Atmosphere関連
すばる望遠鏡、 主星の自転に逆行する 太陽系外惑星を発見
国立天文台 太陽系外惑星探査プロジェクト室 成田憲保
MOAデータベースを使った セファイド変光星の周期光度関係と 距離測定
すばる /HDSによる系外惑星 HD209458bの精密分光観測
トランジット惑星系TrES-1における 初めてのRossiter効果の観測結果
すばる/HDSによる系外惑星HD209458bの精密分光観測
トランジット惑星系におけるRossiter効果 I. HD209458での観測結果
地上分光観測による金星下層大気におけるH2Oの半球分布の導出
すばる&マグナム望遠鏡による 系外惑星トランジットの 同時分光・測光観測
観測的宇宙論ジャーナルクラブ 2006年5月22日 成田 憲保 1
すばるFMOSでの系外惑星大気観測 成田 憲保.
(FMOS戦略枠観測で余ったファイバーによる) M型星まわりのトランジット地球型惑星探し
中間質量ブラックホールの理解に向けた星の衝突・破壊に関する研究
科学概論 2005年1月27日
Presentation transcript:

系外惑星系TrES-1におけるRossiter効果の検出可能性と その観測意義 東京大学大学院 理学系研究科 成田憲保 共同研究者 太田泰弘、樽家篤史、須藤靖 (東京大学) Joshua N. Winn (Harvard-Smithsonian Center) Edwin L. Turner (Princeton Univ.) 田村元秀、山田亨、青木和光(国立天文台) 佐藤文衛(神戸大学)

Rossiter効果とは何か? 惑星のTransitが引き起こす見かけの視線速度のずれ 惑星の公転軌道例 時間 視線速度のずれ Ohta, Taruya & Suto (2005) 惑星がどのようなalignmentを持って主星の前面を 通過するかによってずれのふるまいが決まる

Rossiter効果と惑星形成理論のつながり 現在の惑星形成理論の考え方 ホットジュピターは flatな原始惑星系円盤内での惑星形成 +migrationによる動径方向の軌道変化 で形成されたと考えられている 主星の自転と惑星の公転はよくalignしているはず このalignmentの角度がRossiter効果の観測量

HD209458での観測例 主星の自転と惑星の公転が同方向であることの証明 系外惑星でRossiter効果が確認された唯一の例 ELODIE on 193cm telescope Queloz et al. (2000) http://exoplanets.org/ 主星の自転と惑星の公転が同方向であることの証明 系外惑星でRossiter効果が確認された唯一の例

惑星形成の過程で何が起こる? alignしていることは一見明らかにも思える 微惑星・原始惑星同士の衝突 migration中に3次元方向の軌道変化? 全太陽系惑星の公転面は完全には一致していない  (地球を基準として水星7°冥王星17°他1~3°) flee-floating planetの可能性 形成過程で投げ出された惑星が主星に捕獲される可能性もある 太陽系の木星型惑星には逆周りの衛星がある 系外惑星は惑星形成理論を確かめる手がかりとなる

Transit中の視線速度は1点しか観測されていない 観測ターゲット 現在確認されているTransit惑星は7つ HD209458 V=7.65 OGLE planets (5つ) V=15~17 HD209458は非常に明るいため2m級望遠鏡でRossiter効果が検出できた OGLE惑星は非常に暗いため8m級望遠鏡でも無理 TrES-1 V=11.8 K0V (Alonso et al. 2004) 2004年8月にKeck/HIRESでconfirmされた Transit中の視線速度は1点しか観測されていない

TrES-1でRossiter効果は見えるか? 検出可能性の検討手順 視線速度の決定精度の見積り Rossiter効果による視線速度のずれの予想 予想曲線のまわりに視線速度の決定精度にあわせてサンプルデータを散らばせる そのデータをフィットし、パラメータの決定精度を調べる

TrES-1でRossiter効果は見えるか? 視線速度の決定精度は? HDS/Exposure Time Calculatorで計算 V=11.8 Std I2a 露光時間 10分 seeing 0.8 arcsec slit width 0.8 arcsec without ADC / IMR SN 80~100が得られることがわかった 視線速度の決定精度にして~7ms-1

TrES-1でRossiter効果は見えるか? 予想される視線速度のずれは? Ohta, Taruya & Suto (2005) の公式を用いた 自転速度などを仮定して「true anomaly」を作成 V sin Is = 2 km s-1 (K0V:Noyes et al. 1984) λ= 0 (alignを仮定) その他は観測値を使用 このtrue anomalyのまわりにガウシアン乱数でsimulated dataを散らばせた

結果1.サンプルのフィット 青破線:true anomaly 赤点:simulated data 誤差棒:7 m s-1 黒実線:χ2 最小フィット Rossiter効果によるずれを 検出することが可能 12分に1つのサンプル

結果2.パラメータへの制限 青×:仮定した真の値 赤+:χ2 最小のパラメータ 赤実線:1σおよび2σ V sin Is :1.93 ± 0.30 km s-1 λ:3 ± 20 deg HD209458での観測例と 同等以上の決定精度

検討結果のまとめ すばる/HDSでの1晩の観測で、TrES-1のRossiter効果の検出は十分に期待できる 一般にV<12 程度の明るさを持つ恒星のまわりに、ホットジュピターのTransitが観測できれば、現在の地上観測機器でRossiter効果の確認は十分可能

観測から得られる結果の可能性 よくalignしているという結果 λ= 0から大きくずれていた場合 惑星形成はflatな円盤内で起こるという確認 λ= 0から大きくずれていた場合 Free-floating planetが主星に捕獲された migrationの過程で公転面に大きな傾きが生じた Transit惑星のRossiter効果を調べることにより、 惑星形成理論の前提として考えていることが 正しいのかあるいは何らかの見落としがあるのか ひとつの観測事実を与えることができる

観測の意義 系外惑星系の発見が教えてくれたこと 惑星系の多様性 → 太陽系は「標準」ではない 予想通りの結果が得られるかもしれない 惑星系の多様性 → 太陽系は「標準」ではない 予想通りの結果が得られるかもしれない あるいは思いがけない発見があるかもしれない 他の惑星系の姿を観測することで、 統一的な惑星形成理論への知見が得られる