J: 連続吸収 2006年12月18日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一

Slides:



Advertisements
Similar presentations
無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
Advertisements

ブラックホール時空での摂動 冨松 彰 御岳セミナー 2011.9.1. 内容 1. Anti-de Sitter (AdS) BH と第1法則 2. BH− 円盤系における電磁波の伝播.
プラズマからのX線放射 X-ray Radiation from Plasmas 高杉 恵一 量子科学フロンティア 2002年10月17日.
スケジュール 火曜日4限( 14:45-16:15 ),A棟1333号室
較正用軟X線発生装置のX線強度変化とスペクトル変化
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
第5回 黒体放射とその応用 東京大学教養学部前期課程 2013年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
平成25年度 東京工業大学 大学院基礎物理学専攻
第9回 星間物質その2(星間塵) 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
第5回 黒体放射とその応用 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
D: 色等級図 2006年10月30日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
学部:天体輻射論I 大学院:恒星物理学特論IV 講義の狙い=天体輻射の基礎的な知識を、 (1) 天文学の学習を始めた学部3年生 と、
F:天体ダスト 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 12月8日は休講です。 授業の内容は下のHPに掲載される。
相対論的重イオン衝突実験PHENIX におけるシミュレーションによる charm粒子測定の可能性を探る
第7課 原子、分子のエネルギー準位 平成16年11月29日 講義のファイルは
第2課 黒体輻射とカラー 2.1. 黒体輻射の式 熱平衡にある振動数νの輻射を考える。 フォトンの個数は常に揺らいでいる
第4回 放射輸送の基礎 東京大学教養学部前期課程 2015年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
第4回 放射輸送の基礎 東京大学教養学部前期課程 2014年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
H: 化学平衡 2006年11月27日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。 授業計画は、
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。 授業計画は、
原子核物理学 第4講 原子核の液滴模型.
第6課: 平衡 2005年11月28日 授業の内容は下のHPに掲載されます。
銀河物理学特論 I: 講義1-2:銀河の輝線診断 Tremonti et al. 2004, ApJ, 613, 898
C:ハヤシライン C: ハヤシライン.
授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。 授業計画は、
信川 正順、小山 勝二、劉 周強、 鶴 剛、松本 浩典 (京大理)
第8課: 電離平衡と解離平衡 平成16年12月6日 講義のファイルは
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
前期量子論 1.電子の理解 電子の電荷、比電荷の測定 2.原子模型 長岡モデルとラザフォードの実験 3.ボーアの理論 量子化条件と対応原理
テーマⅧ:低気圧放電の基礎と電子密度・電子温度計測
第8課 エディントン近似 平成17年12月12日 エディントン近似 Eddington Approximation
H:等級とカラー 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 授業の内容は下のHPに掲載される。
黒体輻射 1. 黒体輻射 2. StefanのT4法則、 Wienの変位測 3. Rayleigh-Jeansの式
第9課: 恒星のスペクトル 2005年12月19日 授業の内容は下のHPに掲載されます。
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
メンバー 梶川知宏 加藤直人 ロッケンバッハ怜 指導教員 藤田俊明
高エネルギー天体グループ 菊田・菅原・泊・畑・吉岡
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
実習課題B 金属欠乏星の視線速度・組成の推定
星間物理学 講義1: 銀河系の星間空間の世界 太陽系近傍から銀河系全体への概観 星間空間の構成要素
B: 黒体輻射 2006年10月16日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
I:線吸収 2006年12月11日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
半導体の歴史的経緯 1833年 ファラデー AgSの負の抵抗温度係数の発見
Charmonium Production in Pb-Pb Interactions at 158 GeV/c per Nucleon
2.4 Continuum transitions Inelastic processes
星間物理学 講義2: 星間空間の物理状態 星間空間のガスの典型的パラメータ どうしてそうなっているのか
Numerical solution of the time-dependent Schrödinger equation (TDSE)
卒業論文発表 中性子ハロー核14Beの分解反応 物理学科4年 中村研究室所属   小原雅子.
J: 系外銀河 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 授業の内容は下のHPに掲載される。
第9課:吸収係数 平成16年1月19日 講義のファイルは
電子モンテカルロシミレーション 相互作用 近似 輸送方法 Last modified
第4課 輻射の方程式 I 平成16年11月1日 講義のファイルは、
I:銀河系 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 授業の内容は下のHPに掲載される。
最尤推定・最尤法 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
「すざく」でみた天の川銀河系の中心 多数の輝線を過去最高のエネルギー精度 、統計、S/Nで検出、発見した。 Energy 6 7 8
これらの原稿は、原子物理学の講義を受講している
星間物理学 講義 3: 輝線放射過程 I 水素の光電離と再結合
K: 恒星スペクトル 2007年1月22日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
第5課 輻射の方程式 II 平成16年11月8日 講義のファイルは
F: エディントン近似 2006年11月13日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
C:ハヤシライン 単位名 大学院:恒星物理学特論II 教官名 中田 好一 授業の内容は下のHPに掲載される。
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
TRG-OESによる放電プラズマ診断 Plasma diagnostics by trace rare gas optical emission spectroscopy (TRG-OES)        石原 秀彦* ,勝又 綾子,佐藤 孝紀,伊藤秀範 (室蘭工業大学) はじめに 実験装置および実験条件.
Presentation transcript:

J: 連続吸収 2006年12月18日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一 来年は1月22日に最後の授業があります。 レポート提出の最終期限は当日授業終了時です。 天文事務へのレポート郵送は1月21日着を期限とします。 単位名   学部  :天体輻射論I   大学院:恒星物理学特論IV 教官名 中田 好一 授業の最後に出す問題に対し、レポートを提出。 成績は「レポート+出欠」でつけます。 授業の内容は下のHPに掲載されます。 http://www.ioa.s.u-tokyo.ac.jp/kisohp/STAFF/nakada/intro-j.html E; 吸収係数

J.1. 水素原子のBound-Free 吸収 原子による吸収には、(1)b-f 吸収、(2)f-f 吸収、(3)b-b 吸収の3つがある。b-f とf-f は連続吸収、b-b は線吸収である。 b-fのbはbound stateのb、 f は free state の f である。下図は水素のエネルギーレベルと対応する b-f 吸収を示す。 自由状態 (Unbound State) n= 3 n= 2 n= 1 Paschen 連続吸収 束縛状態 (Bound State) Balmer 連続吸収 Lyman 連続吸収 E; 吸収係数

水素原子の b-f 吸収係数 κbfρ=N1σ1+N2σ2+N3σ3+…… σ(b-f) 吸収端   σn(λ):HI(主量子数=n)のb-f 吸収断面積 σn(λ) = σn(λn) (λ/λn)3G (λn) (λ<λn)   ここに、λn=912×n2 Å(オングストローム)= 吸収端波長         σn(λn)=吸収端における吸収断面積 = (16/3π√3) (πe2/mc)(λL/c)nG          = 0.791×10-17nG cm2         G= Gaunt Factor = 量子力学的補正項(1から数%以内) λ E; 吸収係数

H原子のb-f 吸収断面積 σn(λ) n=1 Lyman cont. n=2 Balmer cont. Paschen cont. n=4 Brackett cont. 3 2 1  σn(λ) (10-17 cm2) 0 0.5 1.0 1.5 λ(μ) E; 吸収係数

両方の掛け算から、T=5,000Kと20,000Kでのn=1,2,3,4からの 吸収係数への寄与を比べてみると、 H原子各順位の存在量 ボルツマン分布) ここに、θ=5040.2/T 一方、 σn(λn) = 0.791×10-17 nG cm2 両方の掛け算から、T=5,000Kと20,000Kでのn=1,2,3,4からの 吸収係数への寄与を比べてみると、 T=5000K   n 1 2 3 4 σn(λn) ( cm2 ) 0.791 10-17 1.582 10-17 2.373 10-17 3.164 10-17 Nn / N1    1   2.09 10ー10 5.87 10-12 2.25 10ー12      Nnσn(λn) / N1   0.791 10-17  3.31 10-27 1.39 10-28 7.12 10-28 T=20,000K n 1 2 3 4 Nn / N1 1 0.0107 0.0081 0.00980 Nnσn(λn) / N1   0.791 10ー17 1.69 10ー19 1.92 10ー19 3.10 10ー19 E; 吸収係数

基底状態にある水素原子1個当りのb-f吸収断面積 log (Nnσn / N1) (cm2/H) -17    -20   -25 -30 ‐1.5 ‐1 ‐0.5 0 logλ(μ) 20,000K Lyman 912 A Paschen 8206 A Balmer 3646 A Brackett 14584A 5,000K E; 吸収係数

ne np / nH =(2πmekT/h2)3/2 exp(‐I/kT) を使うと、 J.2. 水素のFree-free 吸収 自由電子 自由状態 free state 光子 陽子 束縛状態 bound state κff (λ,T)ρ=α(λ, T) ne np ne np / nH =(2πmekT/h2)3/2 exp(‐I/kT)    を使うと、  κff (λ,T)ρ = α(λ, T) nH (2πmekT/h2)3/2 exp(‐I/kT) =1.667 10-16 nH λ3g(10-13.6θ /θ) cm-1 ここに、 g=Gaunt factor λ=波長(μ) θ=5040/T E; 吸収係数

J.3. Negative Hydrogen  H- Electron affinity = 0.70 eV Hylleraas,E. 1930, Zs.f.Phys.,65,209.  量子力学的エネルギー極小(変分計算)   H- Electron affinity = 0.70 eV Wildt,R., 1939. ApJ, 89, 295.      H, Li, O, F, Cl 等の計算結果(1930-1932)から星の大気中に    負イオン存在の可能性を指摘。更に、H+e→H-の衝突断面積σの計算   値(Massey, 1936)から吸収係数 k を出した。      1939, ApJ 90, 619. 水素負イオンによる連続吸収。2 10‐17cm2/H-  当時、実験室では知られていなかったが量子力学の計算から予測。   E= -0.754 eV (1.645 μ) 準位は一つ。多分 (1s)2 1S0                  b-b 吸収 なし。   E; 吸収係数

低温の星ではバルマー不連続が極度に大きくなるはず。 b-f 吸収 E>E0=0.754eV (λ<1.644μ) f-f 吸収 Eは自由。 E0=0.754 eV (1s)2 1S0 水素原子連続吸収問題:  低温の星ではバルマー不連続が極度に大きくなるはず。 (Nσ)- Nσ (Nσ)+ λ T 30,000 10,000 7,000 3,000  比   7.03 30.03 76.36 4833 0.3647μm      実際にはバルマー不連続 (Balmer jump)はA0で極大。 ――> 中性水素以外の連続吸収源が低温度星で必要。 ――> Negative Hydrogen が探されていた吸収を与えた!  E; 吸収係数

復習 A++e-A=0 (I=inization energy) H- の 存在比 復習 A++e-A=0  (I=inization energy) n( A+)n(e)/n(A) =[u(A+)2/u(A)](2πmekT/h2)3/2 exp(‐I/kT)    log[n( A+)/n(A) ]    =log[ u(A+)/u(A) ]+log 2 +(5/2) log T -log Pe-Ⅰ(eV)(5040/T)-0.48                                (Peの単位は erg/cm3) Negative Hydrogen に上の式を適用すると、     H+e-H- =0  (E=inization energy=0.754eV) n( H)n(e)/n(H-) =[u(H)2/u(H-)](2πmekT/h2)3/2 exp(‐E/kT)    log[n(H)/n(H-) ]    =log[u(H)/u(H-)]+log 2 +(5/2) log T -log Pe-E(eV)(5040/T)-0.48           u(H)=2、 u(H-)=1、 E=0.754     =0.125-log Pe+2.5 logT-0.754(5040/T)    =9.381-log Pe-2.5 log(5040/T)-0.754(5040/T) E; 吸収係数

前々ページのσbf(λ) と前ページの[n(H)/n(H-) ]を合わせ、 H- の b-f 吸収係数 前々ページのσbf(λ) と前ページの[n(H)/n(H-) ]を合わせ、 水素原子H 1個当たりのNegative Hydrogen H-のb-f吸収断面積として、 κ(H-)bf = [ N(H-) / N(H) ]σbf = 4.158×10-10 σbf (λ) Pe (5040/T)5/2 100.754(5040/T)   (cm2 / H atom) σbf (λ) はλ=0.85μm 付近で最大値、4×10-17 cm2 をとる。 H- の f-f 吸収係数                   Belland Berrington 1987 J Phys. B 20, 801. κ(H-)ff =10-26 Pe 10A   (cm2 / H atom)    A=fo+f1 logθ+f2log2θ) fo=-2.276-1.6850 logλ+0.76661 log2λ-0.0533464 log3λ f1=15.2827-9.2846 logλ+1.99381 log2λ-0.142631 log3λ f2=-197.789+190.266 logλ-67.9775 log2λ+10.6913 log3λ-0.625151 log4λ θ=5040 / T、 λ(in A) E; 吸収係数

H- の b-f 吸収断面積    by Wishart 1979 MN 187, 59P 10 σbf (10-17 cm2) 1 0.1 0 0.5 1 1.5 λ (μm) 0.754eV σbf(λ)=(1.99654-0.118267 X+264.243 X2-440.524 X3+323.992 X4 –139.568 X5 +27.8701 X6) 10-18 cm2      ここに、Ⅹ=λ(μ) E; 吸収係数

J.4. 吸収係数の計算 ここは、恒星大気の代表的な値に基づいて、水素連続吸収を計算する。ここにあげ たスペクトル型より低温(晩期型)では分子吸収、高温(早期型)では電子による 散乱が効いてくるので、ここでは取り上げない。 スペクトルを計算する星のパラメターは以下のようである。 スペクトル型   Te      Pg(erg/cm3)    Pe(erg/cm3) K7  4000    100,000 0.18   G0 6000 62,000       14   F0 7500     17,000 130   A0 10000  1,300 420 B0.5     25000 1,900 905 E; 吸収係数

N-、n1、 n2、 n3、n4、Ne Peが与えられているので、電子は水素の電離で形成されると考えると、P(HI)は N(He)/N(H)=1/9 として、        P(HI)=(Pg-2・Pe)/1.1   (HIは中性水素原子の意味)で決まる。 次にP(H-)はSAHAの式に今求めたP(HI)を代入して、次の式で決まる。 数密度は k=1.3806・10-16 (erg/K) を使って、 Ne=Pe/kT、 NI=P(HI)/kT、 N-=P(H-)/kT で求まる。 n1、 n2、 n3、n4 をNI= n1+n2+ n3...からもとめるには、NI= n1と近似して、 n2 = n1 ×4×10-10.20θ n3 = n1 ×9×10-12.08θ n4 = n1 ×16×10-12.75θ       (ボルツマンの式) で計算する。θ=5040/T。  E; 吸収係数

次に、上の値を用いて連続吸収係数を計算する。    T   Pg  Pe P H- Ne NI N- n1 n2 n3 n4 n5 K7 4000 1.0(5) 0.18 1.1(-4) 3.2(11) 1.7(17) 1.9(8) 1.6(17) 9.2(4) 8.9(2) 2.2(2) 1.4(2) K0 5000 8.5(4) 0.94 1.7(-4) 1.3(12) 1.1(17) 2.5(8) 1.1(17) 2.3(7) 6.7(5) 2.5(5) 1.9(5) G0 6000 6.2(4) 14 9.1(-4) 1.6(13) 6.8(16) 1.1(9) 6.8(16) 7.3(8) 4.3(7) 2.1(7) 1.8(7) F0 7500 1.7(4) 130 9.7(-4) 1.2(14) 1.4(16) 9.5(8) 1.4(16) 8.2(9) 1.0(9) 6.3(8) 6.1(8) A0 10000 1300 419 2.8(-5) 3.0(14) 2.7(14) 2.0(7) 2.7(14) 7.9(9) 2.0(9) 1.6(9) 1.8(9) B1 25000 1900 905 ----- 2.6(14) 3.4(10) 3.3(2) 3.4(10) 1.2(9) 1.1(9) 1.4(9) 1.9(9) 次に、上の値を用いて連続吸収係数を計算する。 E; 吸収係数

σn(λ) = σn(λn) (λ/λn)3 (λ<λn) (1)HIのb-f 吸収 κbfρ=n1σ1+n2σ2+n3σ3+……         G=1で計算する。    σn(λ) = σn(λn) (λ/λn)3 (λ<λn)    λn=0.0912×n2 μm    σn(λn)= 0.791×10-17 ・n (cm2 )  (2)H-のb-f 吸収    σbf- (λ)=(1.99654-0.118267 X+264.243 X2-440.524 X3+323.992 X4 –139.568 X5 +27.8701 X6) 10-18 cm2        ここに、Ⅹ=λ(μ)    から、N- σbf- (λ)を計算する。 (3)H-のf-f 吸収 NeN-α-ff (λ, T)=10-26・NHI・ Pe (erg/cm3) ・ 10C   (cm-1)  C=fo+f1 logθ+f2log2θ  ただし、θ=5040.2 / T、λ(in A)である。 fo=-2.276-1.6850 logλ+0.76661 log2λ-0.0533464 log3λ f1=15.2827-9.2846 logλ+1.99381 log2λ-0.142631 log3λ f2=-197.789+190.266logλ-67.9775 log2λ+10.6913 log3λ-0.625151 log4λ E; 吸収係数

前節で求めたκ(λ)に基づいて、κRを計算する。 ロスランド平均吸収係数κR 前節で求めたκ(λ)に基づいて、κRを計算する。 Te(K)     4000   5000  6000  7500  10000  25000 κR(cm-1)  3.84E-09 6.82E-9 3.98E-08 3.38E-08 1.43E-08 3.85E-09  E; 吸収係数

恒星表面でのフラックス W(λ)=λ・F(λ) はしたがって、 こうして、Te、kλ、kR が揃ったので、ある波長λでτλ=2/3になる深さでの温度T(λ)はエディントン大気を仮定して下のように求められる。 恒星表面でのフラックス W(λ)=λ・F(λ) はしたがって、 以下に、このようにして求めた、kλ、W(λ)をグラフで示す。 E; 吸収係数

E; 吸収係数

E; 吸収係数

E; 吸収係数

E; 吸収係数

  λ T=6000 0.3737 0.565 0.426 0.597 0.501 0.697 0.699 0.914 0.866 1.092 1.225 0.769 1.655 0.36 2.097 0.433 他の温度も求めてみた。 E; 吸収係数

E; 吸収係数

E; 吸収係数

E; 吸収係数

E; 吸収係数

E; 吸収係数

E; 吸収係数