3.建築材料の密度 密度の支配因子 原子量 原子の配列状態 一般的に原子量(原子番号)が大きいほど、密度は大きい

Slides:



Advertisements
Similar presentations
第2章.材料の構造と転位論の基礎. 2-1 材料の種類と結晶構造 体心立方格子( bcc ) 稠密六方晶格子( hcp ) 面心立方格子( fcc ) Cu 、 Ag 、 Au 、 Al 、 Ni 等 Mg 、 Zn 、 Ti 等 Fe 、 Mn 、 Mo 、 Cr 、 W 、 大部分の鋼 等 充填率.
Advertisements

鉄筋コンクリート構造、:2011版 旧:鉄筋コンクリート(1)
藤井大地(リーダー) 榛葉 亮(設計担当) 原田卓哉(設計担当) 大年政弘(作成担当) 吉冨健志(作成担当)
第2章 機械の強度と材料 機械の必要条件 ★壊れない ★安全である ★正しく機能する そのためには・・・ ★適切な材料を使う
珪化木を模倣した電波吸収用フェライト多孔体の作製 セラミックス基盤工学研究センター 複合機能研究グループ
配合設計 コンクリート工学研究室 岩城 一郎.
セラミックス 第10回 6月25日(水)  セラミックスの物性②.
元素の周期表 教科書 p 元素を 原子番号 順に並べる 性質の良く似た元素がある周期で現れる 元素の周期律 周期表
較正用軟X線発生装置のX線強度変化とスペクトル変化
第10章 焼結体の構造 焼結体の構成:粒子、粒界、気孔 焼結体の物性を左右する微細構造パラメーター:
混合物の低温時クリープおよび破壊挙動への影響
固体の圧電性.
金箔にα線を照射して 通過するα線の軌跡を調べた ラザフォードの実験 ほとんどのα線は通過 小さい確率ながら跳ね返ったり、
無機化合物の構造と特性 との関係を理解する
小笠原智博A*、宮永崇史A、岡崎禎子A、 匂坂康男A、永松伸一B、藤川高志B 弘前大学理工学部A 千葉大大学院自然B
硬化コンクリートの性質 コンクリート工学研究室 岩城 一郎.
・図解「建築の構造と構法」 26~33ページ ・必携「建築資料」 16 ~19ページ
1.Atwoodの器械による重力加速度測定 2.速度の2乗に比例する抵抗がある場合の終端速度 3.減衰振動、強制振動の電気回路モデル
前回の内容 結晶工学特論 第4回目 格子欠陥 ミラー指数 3次元成長 積層欠陥 転位(刃状転位、らせん転位、バーガーズベクトル)
セラミックス 第9回 6月18日(水) セラミックスの物性.
固体電解コンデンサの耐電圧と漏れ電流 -アノード酸化皮膜の表面欠陥とカソード材料の接触界面-
電子物性第1 第6回 ー原子の結合と結晶ー 電子物性第1スライド6-1 目次 2 はじめに 3 原子の結合と分子 4 イオン結合
第3章.材料の強化機構.
空孔の生成 反対の電荷を持つイオンとの安定な結合を切る必要がある 欠陥の生成はエンタルピーを増大させる
微小宇宙物質の 高感度元素定量法の確立 校費 350,000円 旅費 50,000円 平成15年度共同利用研究費査定額
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
金属使用の歴史 ●優れた材料: 強度が高くて、一定の形を作るのが容易 ●有史以前の単体金属: 金、銀、銅、鉄、錫、鉛、水銀
配合とは?配合設計とは? コンクリート工学研究室 岩城 一郎.
コンクリートの強度 (構造材料学の復習も兼ねて)
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
セラミックス 第4回目 5月 7日(水)  担当教員:永山 勝久.
基礎無機化学 期末試験の説明と重要点リスト
6-1.レオロジー 固体・液体 フック固体(完全弾性体) ニュートン液体(理想液体) 応力ひずみ曲線が直線
① (a) 早強 (b) 低熱 (c) 中庸熱 (d) 耐硫酸塩 ② (a) 早強 (b) 耐硫酸塩 (c) 低熱 (d) 中庸熱
使用限界状態 コンクリート工学研究室 岩城 一郎.
原子核物理学 第4講 原子核の液滴模型.
コンクリートの強度 コンクリート工学研究室 岩城 一郎.
配合設計 コンクリート工学研究室 岩城 一郎.
鉄筋コンクリート構造の材料(1) ・図解「建築の構造と構法」     91~93ページ ・必携「建築資料」   材料:78~79ページ.
第7章 複合材料.
硬化コンクリートの性質 弾性係数,収縮・クリープ
単色X線発生装置の製作 副島 裕一.
弓射への力学的アプローチ(その7) 赤門支部 鈴木千輝
塑性加工 第1回 今日のテーマ 塑性変形とは(塑性変形した後どうなる?) (応力(圧力)とひずみ(伸び)、弾性変形) 金属組織と変形
G99P043-4 河邊昌彦 G99p094-1 内藤一兵衛 G99P146-1 八幡淳
応力-ひずみ関係 断面積A,長さLの物体に,(軸)力Pが作用した際,ΔLだけ伸びた(あるいは縮んだ).
金属のイオン化傾向.
硬化コンクリートの性質 コンクリート工学研究室 岩城 一郎.
材料強度学の目的 機械とは… 材料強度学 外部から力を加えて、人に有益な仕事をするシステム 環境 力 材料 材料の破壊までを考える。
H30.2.5破壊実験フィンクトラスの改良点 初代フィンクトラス 改良型フィンクトラス.
シリカガラスの熱的性質 I 粘度,特性温度,熱膨張,比熱,熱伝導 福井大学工学部 葛生 伸.
半導体の歴史的経緯 1833年 ファラデー AgSの負の抵抗温度係数の発見
n型熱電変換材料Nd2-xCexCuO4の結晶構造と熱電特性
応力(stress, s, t ) 自由物体図(free-body diagram)において、外力として負荷荷重P が作用したとき、任意の切断面で力の釣り合いを考慮すると、面における単位面積あたりの内力が存在する、それを応力といい、単位は、Pa(N/m2) で表す。面に垂直に働く垂直応力、s と平行に働くせん断応力、
連続体とは 連続体(continuum) 密度*が連続関数として定義できる場合
建築材料科学 野口貴文.
5.建築材料の力学的性質(2) 強度と破壊 理論強度 実強度 理想的な無欠陥状態での強度 材料は原子の集合体、原子を引き離せば壊れる
鉄筋コンクリート構造の材料(2) ・図解「建築の構造と構法」     93~97ページ ・必携「建築資料」   材料:78~81ページ.
4章:曲げモーメントを受ける部材 キーワード:非線形挙動、断面解析、終局耐力、 等価応力ブロックによる塑性解析、
化学量論組成フルホイスラー合金Fe2TiSn焼結体のp型熱電特性
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
13族-遷移金属間化合物の熱電材料としての応用
配合設計 コンクリート工学研究室 岩城一郎.
これらの原稿は、原子物理学の講義を受講している
Bi置換したCaMnO3の結晶構造と熱電特性
直接通電による抵抗発熱を利用した 金属粉末の半溶融焼結
Pb添加された[Ca2CoO3]0.62CoO2の結晶構造と熱電特性
鉄筋コンクリート構造の材料(1) ・図解「建築の構造と構法」     91~93ページ ・必携「建築資料」   材料:78~79ページ.
セラミックス 第3回目 4月 30日(水)  担当教員:永山 勝久.
エンジニアリングデザイン教育 コンクリート製体重計の作製 愛知工業大学 都市環境学科.
Presentation transcript:

3.建築材料の密度 密度の支配因子 原子量 原子の配列状態 一般的に原子量(原子番号)が大きいほど、密度は大きい Ⅰa→Ⅶa・Ⅷ族 :原子番号が大きいほど原子量大 Ca(1.54), Ti(4.60), Cr(7.18-7.20), Mn(7.74), Fe(7.874) Ⅰb→Ⅶb族 :原子番号が大きいほど原子量小 Cu(8.94), Zn(7.13), Ga(6.907), Ge(5.32) 原子の配列状態 最密充填を得るための必要条件 原子が空間的に自由に配置し得る(金属結合、イオン結合) 侵入型固溶体の合金の密度>母相金属の密度 プラスティックは重くなり得ない 共有結合 線状・網状構造 原子量の小さいC, H, O, Cl, Nなどの元素で構成される

3.建築材料の密度 密度の支配因子 材料の組織構造 稠密組織 :密度大 細胞組織・繊維集合組織 :密度小 プラスティックフォーム 稠密組織 :密度大 細胞組織・繊維集合組織 :密度小 プラスティックフォーム 発泡前の密度 0.8~1.4g/cm3 発砲後の密度 0.012~1.20g/cm3 発泡材の実績率 1~25%

3.建築材料の密度 かさ特性 稠密組織(金属、密実なガラス、プラスティック) 気孔組織・複合集合組織 真の密度=質量/真の体積 プラスティックフォーム:真の体積=発泡前の体積 木材・軽量コンクリート:真の体積=粉末にして測定した体積 見掛けの密度=質量/見掛けの体積 見掛けの体積=空隙を含む体積 実積率(%) =(見掛けの密度/真の密度)×100 =(真の体積/見掛けの体積)×100 空隙率(%) =100-実積率

3.建築材料の密度

3.建築材料の密度 かさ特性 粉粒体の場合 見掛けの体積=粒の外周体積 単位容積質量 =一定容器に詰めた質量/粒間の空隙を含む かさ体積(容器の容量) 実積率(%)=(単位容積質量/粒の見掛けの密度)×100 粒の見掛けの密度=粒の状態で(粉末とせずに)測定した密度

3.建築材料の密度 粉粒体の充填

3.建築材料の密度 最密充填 球の場合 直径の等しい球の場合 体心立方格子 実積率= 空隙率=32% 面心立方格子 直径の等しい球の場合の最密充填状態、証明:1997 空隙率=26% 稠密六方構造も最密充填状態 任意の球に接する球12個

3.建築材料の密度

3.建築材料の密度 最密充填 球の場合 直径の異なる球の場合 実積率を高めるには 最初に直径の一番大きい球を最密充填 残りの空隙を次の大きさの球で充填 Fuller&Thompsonの最大密度曲線 骨材の場合 一般的に細骨材率が45%前後で最密充填となる

3.建築材料の密度 密度と強度・弾性係数 同一組成の材料 密度大→実積率大→強度大 コンクリートの場合 無機質軽量板の場合 引張材(長さl、断面積A、質量W、密度ρ、引張強度σt) 最大荷重(Pmax)∝比強度(σ/ρ) 一定の伸びを与える引張荷重(Pt)∝比弾性係数(E/ρ)

3.建築材料の密度

3.建築材料の密度

3.建築材料の密度 密度と強度・弾性係数 同一組成の材料 梁(幅b、せいh、単位長さ質量W、曲げ強度σb) 抵抗曲げモーメント(幅b=c1一定の場合) 抵抗曲げモーメント(せいh=c2一定の場合)

3.建築材料の密度 密度と熱伝導率 同一組成の材料 繊維集合組織・プラスティックフォーム 密度の増大→実質部分の増加→空隙部分の減少→熱伝導率の増加 繊維集合組織・プラスティックフォーム ある値の密度で、熱伝導率が最小値

3.建築材料の密度

3.建築材料の密度

3.建築材料の密度 密度と比熱 元素の密度の増大→比熱の減少

3.建築材料の密度

3.建築材料の密度 密度と吸湿・吸水量 木材 岩石 密度の増大 →細胞の実質部の増加 →吸湿量(繊維飽和点以下の吸水量)の増加 →空隙の減少 →飽水量の減少 岩石 密度の増大→密実→吸水量の減少

3.建築材料の密度 細粒(土・砂)の含水膨張 含水→表面に水膜を形成→見掛け上膨張→単位容積質量の減少 細粒の膨張現象は、固体・液体・気体の3相が共存する場合に生じる 乾燥した砂のかさ体積=水中の砂のかさ体積 湿った土砂の計量は要注意 含水率の変化によって実質量が変化する

3.建築材料の密度

3.建築材料の密度