第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.

Slides:



Advertisements
Similar presentations
統計学の基礎 -何を学ぶか。 何ができるようになるか-. データとは何か 母集団と標本(サンプル)、データの関係 統計的方法を用いることにより、統計量から母数について どれほどのことが言えるか、知ることができる。 2.
Advertisements

母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
統計学 西山. 平均と分散の標本分布 指定した値は μ = 170 、 σ 2 = 10 2 、データ数は 5 個で反復 不偏性 母分散に対して バイアスを含む 正規分布カイ二乗分布.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4章 統計的検定 統計学 2007年度.
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
第4章補足 分散分析法入門 統計学 2010年度.
      仮説と検定.
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
ホーエル『初等統計学』 第8章1節~3節 仮説の検定(1)
第1章 統計学の準備 ー 計量経済学 ー.
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
統計学 12/3(月).
第2章 単純回帰分析 ー 計量経済学 ー.
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
経済統計 第三回 5/1 Business Statistics
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
確率・統計Ⅱ 第7回.
第3章 統計的推定 統計学 2008年度.
第2章補足Ⅱ 2項分布と正規分布についての補足
母集団平均値の区間推定 大標本の区間推定 小標本の区間推定.
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
確率・統計輪講資料 6-5 適合度と独立性の検定 6-6 最小2乗法と相関係数の推定・検定 M1 西澤.
統計解析 第10回 12章 標本抽出、13章 標本分布.
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
第3章 統計的推定 (その1) 統計学 2006年度.
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
数理統計学 西 山.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
母分散の信頼区間 F分布 母分散の比の信頼区間
1.母平均の検定:小標本場合 2.母集団平均の差の検定
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
確率と統計2009 第12日目(A).
第4章 統計的検定 (その2) 統計学 2006年度.
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
統計学  第9回 西 山.
数理統計学 西 山.
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
統計現象 高嶋 隆一 6/26/2019.
Presentation transcript:

第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>

(その1) (その2) Ⅰ 標本分布 Ⅱ 点推定 Ⅲ 区間推定 a) 母集団と標本 b) 標本平均の標本分布 c) 標本分散の標本分布 Ⅰ 標本分布 a) 母集団と標本 1) 標本調査の利点 2) 標本調査における誤差 b) 標本平均の標本分布 c) 標本分散の標本分布 Ⅱ 点推定 点推定 統計量の特性 不偏性 その他の統計量特性 Ⅲ 区間推定 a) 母平均の区間推定 中心極限定理 信頼区間 母分散が既知の場合の区間推定 母分散が未知の場合の区間推定 b) 母比率の区間推定 標本比率の標本分布 母比率の区間推定 c) 標本数の決定 母平均の区間推定における標本数の決定 母比率の区間推定における標本数の決定 (その1) (その2)

Ⅲ 区間推定 点推定で母数θをピタリと推定することは難しい。そのため、標本統計量tの近くの区間を設定し、その区間内に母数θが含まれることを推定する。これを区間推定という。    の標本分布について、    が成り立っていた。また、母集団の個体数(N)が十分大きいとき、    が成り立つ a) 母平均の区間推定 1) 中心極限定理

次に、標本平均 の分布がどのような形になるのか考えてみよう。 ⅰ) 母集団の分布が正規分布の場合   次に、標本平均   の分布がどのような形になるのか考えてみよう。  ⅰ) 母集団の分布が正規分布の場合    母集団が平均μ、分散σ2の正規分布にしたがっているとする。    標本平均  は    であり、正規分布にしたがう変数の和(をnという定数で割ったもの)となっている。    したがって、正規分布の再生性†より、  は正規分布にしたがう。    † 確率変数XとYがそれぞれN(μx,σ2x), N(μy,σ2y) にしたがうとき、その1次結合α X+βY はN(αμx+βμy,α2σ2x+β2σ2y )にしたがう。これを正規分布の再生性という。

※ 以上ⅰ),ⅱ) より、nが大きい時には母集団の分布にかかわらず、標本平均 の分布は正規分布となり、標準化された変数  ⅱ) 母集団の分布が正規分布ではない場合   母集団の分布が正規分布でない場合でも、標本の個体数 n が大きいとき、次のような定理によって標本平均  の分布は正規分布となる。 <中心極限定理>   算術平均μ, 分散σ2をもつ母集団からとられた大きさ n の標本の平均  の分布は、母集団の分布がどのようなものであっても、 n が大きくなるとき、正規分布 N(μ,  )に近づく。  ※ 以上ⅰ),ⅱ) より、nが大きい時には母集団の分布にかかわらず、標本平均  の分布は正規分布となり、標準化された変数 の分布は、標準正規分布 N(0, 1) に近づく。

2) 信頼区間   標準正規分布にしたがう変数が、-1.96と1.96の間の値をとる確率は95%である。よって、      はnが大きいときには、中心極限定理により標準正規分布にしたがうので、   となる。この式のカッコ内を変形すると   となり、標本平均  は        の区間内に95%の確率で含まれる。

    の分布                  zの分布 また                  のカッコ内は次のようにも変形できる。 標準化 μ -1.96 1.96

                    と                   は次のようなことを意味している。 μ × × ×

このように母数が含まれると考えられる区間を信頼区間といい、その区間に母数が入ると信頼できる程度を信頼係数という。     を中心に、        という区間を考えると、とりうる標本のうち95%がこの区間内に母平均μを含む。 このように母数が含まれると考えられる区間を信頼区間といい、その区間に母数が入ると信頼できる程度を信頼係数という。 この場合、             はμの信頼係数95%の信頼区間である。

3) 母分散が既知の場合の区間推定 (例) 20歳男性の身長を調べるために、100人を標本として選んだところ、標本平均  =170であった。σ=8であるとき、母平均μの95%信頼区間を求めよ。 (解) μの95%信頼区間は     となる。

4) 母分散が未知の場合の区間推定 信頼区間を求める場合、         が標準正規分布にしたがうという性質を用いる。しかし、母平均の推定をおこなう場合に、母分散σ2が分かっているということは、あまり多くない。 母分散σ2がわからないとき、代わりに標本分散s2を用いる。 このとき、        が自由度n-1のt分布にしたがう。

※ t分布は標準正規分布を上からつぶしたような、左右対称の形をしている。自由度が小さいほどつぶれ具合が大きく、自由度が大きいほど標準正規分布に近くなっている。 ※ 標本分散s2の代わりに標本不偏分散   を用いれば、      が自由度n-1のt分布にしたがう。

<自由度について>   自由度とは、自由に値を取ることのできる個体数のことである。   この場合は、t統計量の自由度は標本分散 s2 の分子に含まれる xi のうち、自由に値を取ることのできる個数である。   なので、x1, …, xn-1 は自由に値をとることができるが、xn は   を満たすように決められ、自由度はn-1となる。

母集団の分散が分からないとき、母平均μの95%信頼区間は、t分布の95%点をt0.95とあらわすと、  となる。 t0.95はt分布表からその値を求める。 ※ より正確には、母集団の分布が正規分布にしたがうとき、        が自由度n-1のt分布にしたがう。   しかし、母集団の分布が正規分布にしたがわない場合でも、標本の大きさがある程度大きければ、        は近似的に自由度n-1のt分布にしたがうとみなせる。   また、nが十分大きい場合、t分布は正規分布に近づくので、     が正規分布にしたがうと考えることもある。

(例) 20歳女性の身長を調べるために、10人を標本として選んだところ、標本平均  =160であった。s=9であるとき、母平均μの95%信頼区間を求めよ。 (解) 自由度10-1=9のt分布のt0.95=2.262なので、 μの95%信頼区間は   となる。

よって の標本分布を考えるためには、まずxの標本分布を考えればよい。 まず、標本比率 の標本分布を考えよう。 b) 母比率の区間推定   1) 標本比率の標本分布  よって  の標本分布を考えるためには、まずxの標本分布を考えればよい。   まず、標本比率  の標本分布を考えよう。   内閣支持率を例にとると、標本比率  とは、標本n人のうちのx人が「内閣を支持する」と答えた割合であり、    である。

となる。 標本として選ばれた人の答えは、それぞれ「内閣を支持する」か「内閣を支持しない」かのいずれである。   また選ばれた人が 「内閣を支持する」人である確率は、母比率pに等しい。   よって、n人の標本を選ぶことは、AかBかという2つの結果しか起こらない試行 をn回繰り返すこととみなすことができ、 「内閣を支持する」人の人数xは2項分布にしたがう。 2項分布の期待値は E(x) = np、分散は V(x) = npq であるので、これを用いて、  の平均、分散を考えてみると、                        となる。

また、「内閣を支持する」人を1、「内閣を支持しない」人を0と表すことを考える。n人の標本の中に「内閣を支持する」人はをx人含まれるので、このようにあらわした場合、     は大きさnの標本の平均とみなすことができ、中心極限定理が適用できる。   よって、  の分布は、平均p、分散  の正規分布にしたがう。標準化された変数       は標準正規分布にしたがう。 

が標準正規分布にしたがうことから、母比率pの 95%信頼区間は となる。 2) 母比率の区間推定         が標準正規分布にしたがうことから、母比率pの   95%信頼区間は              となる。 (例) World Baseball Classic 決勝 日本-キューバ戦の視聴率は43.4% であった。この数値は関東地区の約1600万世帯から600世帯をサンプルとして選んだ結果である。このデータから、関東地区全世帯の視聴率の95%信頼区間を求めよう。 (解) pの代わりに   を用いてpの95%信頼区間を計算すると                                    となる。

c) 標本数の決定   WBC決勝戦の視聴率を信頼係数95%で区間推定すると、8%もの幅ができる。そのため、1%ぐらいの差で、勝った負けたを考えるのはナンセンスである。   では、視聴率調査の精度を高めるには、推定量の一致性から標本数を増やすことが考えられる。しかし、標本数を増やすことはコストの増加を意味している。よって、目標となる精度(どの程度のズレまで許容できるか)を設定し、それに必要な標本数を計算する必要がある。

1) 母平均の推定における標本数の決定          の許容限度を E とする。      の区間推定を信頼係数 95% でおこなうとき、  の分布について、   が成り立つので、   となればよい。よって

  となり、   が必要標本数であることが分かる。   これを求めるために、母標準偏差σが必要となるが、標本数を決定するということは、データ収集をおこなう前のことであり通常はわからない。そのため、過去の経験などからσ2 の推定値を求め、それを利用する。 (例) ある大都市の大学生の1ヶ月平均生活費を1000円以内の誤差で推定するという問題を考える。ただし、母集団の標準偏差は8000円であったと見当がつけられているとする。 (解) 信頼係数を95%とすると、必要標本数は   となるので、246人となる。

2) 母比率の推定における標本数の決定          の許容限度を E とする。   pの区間推定を信頼係数 95% でおこなうとき、  の分布について、   が成り立つので、   となればよい。よって

  となり、   が必要標本数であることが分かる。   これを求めるために、母比率pが必要となる。Pについて何らかの見当がつくなら、その数値を用いるが、pについて何の情報もない場合には   を用いる。なぜなら、     のときに、pqが最大となるからである。 (例) 視聴率調査において、1%以内の誤差で推定するために必要な標本数を求めよ。 (解) 信頼係数を95%とする。また、母比率についてはあらゆる可能性が考えられるので、    とすると、必要標本数は   となるので、9604人となる。