Download presentation
Presentation is loading. Please wait.
1
中学校2年生 数学科 図形の性質
2
知ってますか? 図形の名前?
7
平行四辺形の4つの角を同じ(90°)にすると 長方形 【定義】 4つの角が等しい(90°)平行四辺形を 長方形という。
8
平行四辺形の4つの辺の長さを等しくすると ひし形 【定義】 4つの辺が等しい平行四辺形を ひし形という。
9
正方形 【定義】 平行四辺形の4つ角を等しく4つの辺の長さを等しくすると
4つの角が等しくて、4つの辺の長さが等しい平行四辺形を正方形という。
10
長方形の4つの辺の長さを同じにすると 長方形の特別な形 正方形 【定義】 4つの角が等しくて、4つの辺の長さが等しい平行辺形を正方形という。
11
正方形 【定義】 ひし形の4つの角を同じ(90°)にすると ひし形の特別な形
4つの角が等しくて、4つの辺の長さが等しい平行辺形を正方形という。
12
△ABCと△DCBで2組の辺とその間の角がそれぞれ等しいから
長方形の対角線の長さは等しい。 D A O B C △ABCと△DCBで2組の辺とその間の角がそれぞれ等しいから △ABC≡△DCB よって AC=DB
13
長方形の対角線の長さは等しい。 B △ABCと△DCBで 【証明】 A D C = 、 = ∠ =∠ ∴ [ ] △ABC≡△DCB
O B C △ABCと△DCBで = 、 = ∠ =∠ ∴ [ ] △ABC≡△DCB よって AC=DB
14
ひし形の対角線は垂直に交わる。 A B D O C 二等辺三角形の頂角Aと底辺BDの中点Oを結ぶ直線は、底辺BDと垂直に交わる。
15
ひし形の対角線は垂直にまじわる。 B 四角形ABCDは[ ]だから A 【証明】 D C O = 、 = よって、△ABDは、[ ]より、
= 、 = よって、△ABDは、[ ]より、 [ ]だから AC⊥BD
16
B B 四角形の対角線の性質 A D ① 長方形の対角線は、 長さが等しい。 ② ひし形の対角線は、 垂直に交わる。 ③正方形の対角線は、
① 長方形の対角線は、 長さが等しい。 ② ひし形の対角線は、 垂直に交わる。 ③正方形の対角線は、 長さが等しく、垂直に交わる。 O B C A B D O A D C O B C
17
∠A=∠B AB=BC AB=BC ∠A=∠B A D 長方形 B C A D A 平行四辺形 D 正方形 C B A B C ひし形 D
18
A B C D ABCDで、2つの対角線AC、BDにどんな関係があるとき、 ABCDは長方形、ひし形になりますか。 問3 [長方形]
[ひし形]
19
平行四辺形の性質
20
平行四辺形の性質
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.