第5章 疲労強度.

Slides:



Advertisements
Similar presentations
1 設計基礎コース もう一度学ぶ材料力学の基礎 座屈 ( Buckling ) 長軸に軸方向圧縮力を作用させると、ある荷 重で急に軸が曲がる。 この急に曲がる荷重条件を探る。 X の位置での曲げモーメントは たわみの微分方程式は.
Advertisements

「設計論」 というほどのものではないが・・・ コンクリート工学研究室 岩城 一郎. 設計とは? (広辞苑) せっ‐けい【設計】 (plan; design) ある目的を具体化する作業.製作・工事 などに当り,工費・敷地・材料および構 造上の諸点などの計画を立て図面その他 の方式で明示すること.「ビルの.
第2章.材料の構造と転位論の基礎. 2-1 材料の種類と結晶構造 体心立方格子( bcc ) 稠密六方晶格子( hcp ) 面心立方格子( fcc ) Cu 、 Ag 、 Au 、 Al 、 Ni 等 Mg 、 Zn 、 Ti 等 Fe 、 Mn 、 Mo 、 Cr 、 W 、 大部分の鋼 等 充填率.
鉄筋コンクリート構造、:2011版 旧:鉄筋コンクリート(1)
藤井大地(リーダー) 榛葉 亮(設計担当) 原田卓哉(設計担当) 大年政弘(作成担当) 吉冨健志(作成担当)
第2章 機械の強度と材料 機械の必要条件 ★壊れない ★安全である ★正しく機能する そのためには・・・ ★適切な材料を使う
No.2 実用部材の疲労強度           に関する研究 鹿島 巌 酒井 徹.
円形管における3次元骨組解析への適用事例 平成16年9月17日 (株)アイエスシイ 犬飼隆義.
5章 許容応力度 本文 pp8-14 解説 pp 構造用鋼材 : 許容曲げ応力度式の変更等
20. ショットの跳返りを利用した機械部品内面への ショットピーニング加工法の開発
観光ナガサキを支える“道守”養成ユニット
第2章 機械の強度と材料 機械の必要条件 ★壊れない ★安全である ★正しく機能する そのためには・・・ ★適切な材料を使う
第4章.材料の破壊と破壊力学.
柱崩壊と梁崩壊 (塑性設計の話) 第3部 その2 塑性設計の注意点 第4回岐阜建築鉄骨技術交流会 (かんたん構造講義)
硬化コンクリートの性質 コンクリート工学研究室 岩城 一郎.
名古屋市南部の橋を長持ちさせる方法を考えてみよう。
セラミックス 第9回 6月18日(水) セラミックスの物性.
制約条件の確率的選択に基づく 資源追加削減法の改良 三木 光範(同志社大工) 廣安 知之(同志社大工) ○小林 繁(同志社大院)
第3章.材料の強化機構.
(b) 定常状態の近似 ◎ 反応機構が2ステップを越える ⇒ 数学的な複雑さが相当程度 ◎ 多数のステップを含む反応機構
モンテカルロ法と有限要素法の連成による 焼結のマイクロ‐マクロシミュレーション
コンクリートと鉄筋の性質 コンクリート工学研究室 岩城一郎.
コンクリートの強度 (構造材料学の復習も兼ねて)
有限要素解析 Carl R. Schultheis.
しごきスピニング加工の 近似3次元有限要素シミュレーション 塑性加工研究室 明石 和繁 局部的な変形 肉厚分布を持った製品 低い加工荷重
使用限界状態 コンクリート工学研究室 岩城 一郎.
塑性加工の有限要素シミュレーション 豊橋技術科学大学  森 謙一郎 有限要素法の基礎 鍛造,押出し,深絞り加工への応用.
コンクリートの強度 コンクリート工学研究室 岩城 一郎.
第7章 複合材料.
硬化コンクリートの性質 弾性係数,収縮・クリープ
プレストレス(Prestress)のロス(Loss)
ひび割れ面の摩擦接触を考慮した損傷モデル
セラミックス 第11回目 7月4日(水).
塑性加工 第1回 今日のテーマ 塑性変形とは(塑性変形した後どうなる?) (応力(圧力)とひずみ(伸び)、弾性変形) 金属組織と変形
応力-ひずみ関係 断面積A,長さLの物体に,(軸)力Pが作用した際,ΔLだけ伸びた(あるいは縮んだ).
4章:曲げモーメントを受ける部材 キーワード:非線形挙動、断面解析、終局耐力、 等価応力ブロックによる塑性解析、
今日の学習の目標 ① 荷重ー変形量線図を理解しよう。 ② 応力ーひずみ線図を理解しよう。 ③ 比例限度・弾性限度・降伏点・引張り強さ・
材料強度学の目的 機械とは… 材料強度学 外部から力を加えて、人に有益な仕事をするシステム 環境 力 材料 材料の破壊までを考える。
H30.2.5破壊実験フィンクトラスの改良点 初代フィンクトラス 改良型フィンクトラス.
溶接継手近傍の疲労亀裂 82188082 中島宏基.
応力(stress, s, t ) 自由物体図(free-body diagram)において、外力として負荷荷重P が作用したとき、任意の切断面で力の釣り合いを考慮すると、面における単位面積あたりの内力が存在する、それを応力といい、単位は、Pa(N/m2) で表す。面に垂直に働く垂直応力、s と平行に働くせん断応力、
鉄骨構造の特徴 Steel Frame Structure
リングの回転成形の 近似3次元有限要素シミュレーション 塑性加工研究室 平松直登 一般化平面ひずみを用い た近似3次元FEM
プレストレス(Prestress)のロス(Loss)
プレストレストコンクリートに関する復習 プレストレストコンクリート(prestressed concrete:PC)構造とは?
5.建築材料の力学的性質(2) 強度と破壊 理論強度 実強度 理想的な無欠陥状態での強度 材料は原子の集合体、原子を引き離せば壊れる
微細ショットピーニング加工による 金属部品の機械的特性の向上
金属加工学 “材料に形を与える” 材料プロセス工学専攻 材料加工工学講座 湯川伸樹.
第1回、平成22年6月30日 ー FEM解析のための連続体力学入門 - 応力とひずみ 解説者:園田 恵一郎.
機械の安全・信頼性に関するかんどころ 機械製品に対する安全要求と設計方法 一般財団法人 機械振興協会 技術研究所.
4章:曲げモーメントを受ける部材 キーワード:非線形挙動、断面解析、終局耐力、 等価応力ブロックによる塑性解析、
コンクリート構造物の設計法 コンクリート工学研究室 岩城 一郎.
円管の口絞り加工におけるカーリング現象の 有限要素シミュレーション
鉄筋コンクリートとは? 鉄筋とコンクリートという異なる2種類の材料が双方の短所を補うことにより,一体となって外力に抵抗するもの.
曲げを受ける鉄筋コンクリート部材 (状態III)
対象:せん断補強筋があるRCはり(約75万要素)
3.建築材料の密度 密度の支配因子 原子量 原子の配列状態 一般的に原子量(原子番号)が大きいほど、密度は大きい
管材のしごきスピニング加工 における加工限界 塑性加工研究室 安部洋平 ロール角度, 送り量, 肉厚減少率の影響 ロール v マンドレル
軸対称近似を用いたしごきスピニングの 有限要素シミュレーション
問14(第1回):鉄筋コンクリートに関する次の記述のうち、正しいものの数を数字で答えよ. a
ここでは、歪エネルギーを考察することにより、エネルギー原理を理解する。
6章:せん断力を受ける部材     キーワード: せん断破壊(shear fa****)、 斜めひび割れ、 急激な破壊 設計:せん断耐力>曲げ耐力.
鉄筋コンクリートはりの 曲げ耐力の算出 コンクリート工学研究室 岩城一郎.
大型ホイールのディスク成形における 有限要素シミュレーション 有限要素 シミュレーション 工具と素材形状の最適化 材料の歩留り向上
塑性加工 第2回 今日のテーマ ・応力ーひずみ線図の正しい見方 (ヤング率はなぜ異なるのか?) (引張と圧縮は同じ?)
機械的特性向上 成形性向上 50. 加工・通電熱処理による アルミニウム合金板の機械的特性の向上 車両の軽量化 塑性加工学研究室 石黒 農
コンクリート構造物の 力学を学ぶために コンクリート工学研究室 岩城 一郎.
問題14(11.曲げモーメントを受ける部材):  次の図は,曲げモーメントを受ける鉄筋コンクリート断面(単鉄筋長方形断面)の仮定を示したものである.この図の記述について,間違っているものを解答群から一つ選べ. a. 図中のうち,Ⅰ:弾性解析(全断面有効)では,ひび割れ前の純弾性状態に対して,用いられる断面仮定であり, 
各種荷重を受ける 中空押出形成材の構造最適化
RCはりをU字型補強した連続繊維シートによる
Presentation transcript:

第5章 疲労強度

材料の疲労破壊事例 インデューサ羽根の疲労破面 1999年11月 H-2ロケット8号機打ち上げ失敗事件

5.1 疲労破壊 疲労破壊とは 一定荷重を規則的に繰り返すか、 あるいは荷重が不規則に変動する際に生じる破壊機構のこと。 ◎ 破壊の仕方 5.1 疲労破壊 一定荷重を規則的に繰り返すか、 疲労破壊とは あるいは荷重が不規則に変動する際に生じる破壊機構のこと。 ◎ 破壊の仕方 長期間にわたって動的荷重を加えると 何の前触れも無く、突然起こる。 静的破壊 13% 腐食・破裂等 3% 遅れ破壊、 応力腐食割れ 5% 熱疲労 腐食疲労 転動疲労 11% 単純疲労 60% 低サイクル疲労 8% ◎ 破壊事故原因 約80~90%が疲労による。 ◎ 繰り返し荷重によって生じる応力 降伏応力や耐力より   かなり低くても疲労破壊は起こる。

疲労現象と疲労破面 疲労破壊の特徴 (1)起点 … 部材の表面付近 応力集中源 (切欠、鋭角、キー溝、非金属介在物) (2)き裂の伝ぱ … (1)起点 … 部材の表面付近 応力集中源 (切欠、鋭角、キー溝、非金属介在物) (2)き裂の伝ぱ … 疲労き裂発生後、最大応力面に沿う 一対の破面はかなり滑らかで、 巨視的には塑性変形はほとんど生じていない。 巨視的破面の特徴 … ビーチマーク (繰返し応力レベルの変動、環境の変動) 微視的破面の特徴 … ストライエーション (縞状模様) その他、破面の特徴 … き裂の成長により断面が減少 荷重の負担ができず、延性的に破壊 破面上には、比較的粗い部分が残る。

疲労破壊とその因子 基本的因子 (1) 最大引張り応力 (2) 変動応力 (3) 応力の繰り返し数 十分に大きい ・ 応力集中 時間 応力 引張り(+) 圧縮(-) 基本的因子 (1) 最大引張り応力 (2) 変動応力 (3) 応力の繰り返し数 十分に大きい ・ 応力集中 ・ 腐食や高温などの環境 ・ 残留応力 ・ 冶金学的組織 ・ 組み合わせ応力 ・ 過大応力 ◎ その他の原因

5.2 疲労試験と試験機 (b)両振り 引張り(+) 圧縮(-) 応力 時間 (c)片振り σm : 平均応力 σa : 応力振幅 5.2 疲労試験と試験機 (b)両振り σm= 0 R = ‐1 引張り(+) 圧縮(-) 応力 時間 (c)片振り R = 0 σm= σa σm : 平均応力 σa : 応力振幅 R : 応力比 繰り返し応力波形 σmin σm σmax σa 応力 時間 (a)一般的波形

5.2 回転曲げ疲労試験の例 片持ち回転曲げ疲労試験機 回転曲げ疲労試験機 図 回転曲げ疲労試験機の原理 図 片持ち回転曲げ疲労試験機と試験片形状 片持ち回転曲げ疲労試験機 回転曲げ疲労試験機 図 回転曲げ疲労試験機の原理

(Extremely Low Cycle Fatigue) 5.3 低サイクル疲労 5.3.1 繰返し応力とひずみ応答 ヒステリシスループ(後述) σa ; 高応力の値   (塑性変形の繰り返し) 極低サイクル疲労 (Extremely Low Cycle Fatigue) 低サイクル疲労 (Low Cycle Fatigue) 応力振幅 σa 破断までの繰返し数 Nf 101 102 103 104 105 106 107 低サイクルと高サイクル 疲労寿命が短い 高温環境下で用いられる 原動機などの設計 熱ひずみの繰り返し ・ 原子炉圧力容器 ・ 蒸気タービン

ヒステリシスループ ・・高応力で塑性ひずみを伴う一定の負荷が繰り返される時の応力‐ひずみの関係 塑性域での負荷過程 降伏 ヒステリシスループ  ・・高応力で塑性ひずみを伴う一定の負荷が繰り返される時の応力‐ひずみの関係 σa B 塑性域での負荷過程 A 降伏応力 C 降伏 最初の降伏応力より低い (バウシンガー効果) Δσ Δεr 圧縮 D E Δεp 引張りひずみを加える 除荷過程 図 ヒステリシスループ

ΔεT=一定で、繰返し変形を与えた時のヒステリシスの変化 σaが徐々に増加 σaが徐々に減少 ・・ひずみ軟化現象 ・・ひずみ硬化現象 図 低ひずみ繰返しにおける応力幅変動 (a) 繰返し硬化 例 焼きなまし材料 (b) 繰返し軟化 例 加工硬化、析出硬化

ヒステリシスループ 繰返し数とともに変化抵抗である応力幅が変化 ・ 焼きなましした材料 Δσ増加 静的応力ーひずみ曲線 ・ 焼きなましした材料  Δσ増加 ・ 冷間加工した材料   Δσ減少 静的応力ーひずみ曲線 応力 Δσ ひずみ Δε 繰り返し応力-ひずみ曲線 寿命の50%で   ヒステリシスループの形状は落ち着く 繰返し応力-ひずみ曲線 Δσ ; 応力幅 K’ ; 繰返し強度係数 n’ ; 繰返し硬化指数 (一般に n’≒ 0.05~0.3)

5.3.2 ひずみ幅と疲労寿命 Δεp(Nf)0.45=0.20 低サイクル疲労における塑性ひずみ幅 Δεpと疲労寿命 Nfの関係 5.0 マンソンーコフィン則 b,C ; 材料によって決まる定数 (多くの材料  b≒0.5) Δεp(Nf)0.45=0.20 1.0 ひずみ幅 Δεp ◎ A0 ; 試験前の断面積 A ; 破断後の最小断面積 φ ; 絞り εf ; 破断延性 0.1 10 100 1000 10000 破断繰り返し数 Nf 図 低サイクル疲労における塑性ひずみ幅   と破面までの繰返し数の関係(TP35) ◎ Nf =1/4回において、Δεp=2εf  C=εf またΔεp=εfのときC=εf /2

(Extremely Low Cycle Fatigue) SーN曲線(高サイクル疲労と低サイクル疲労) ヒステリシスループ σa ; 高応力の値   (塑性変形の繰り返し) 極低サイクル疲労 (Extremely Low Cycle Fatigue) 低サイクル疲労 (Low Cycle Fatigue) 応力振幅 σa 破断までの繰返し数 Nf 101 102 103 104 105 106 107 高サイクル疲労 (High Cycle Fatigue) 弾性域内 σa ; 弾性応力とみなせる値

5.4 高サイクル疲労 5.4.1 SーN曲線と疲労寿命 図 高サイクル疲労におけるS-N曲線 疲労試験結果を評価する上で最も基本的な線図。 5.4 高サイクル疲労 5.4.1 SーN曲線と疲労寿命 疲労試験結果を評価する上で最も基本的な線図。 繰返し応力(主に応力振幅 σa)と破壊するまでの繰返し数 Nf の関係を示す。 応力集中がある場合は、   応力集中を考慮しない公称応力を適用。 疲労寿命という。 通常、常用対数 log Nf をとる。 図 高サイクル疲労におけるS-N曲線

5.4.2 疲労過程(微視組織的様相Ⅰ) 拡大 き裂発生、初期伝ぱ過程 (き裂進展の第一段階) 試験片表面 繰返し応力 突き出し 入り込み 5.4.2 疲労過程(微視組織的様相Ⅰ) き裂発生、初期伝ぱ過程 (き裂進展の第一段階) 試験片表面 繰返し応力 拡大 突き出し 入り込み 固執すべり帯 (Ⅰ) き裂進展の第一段階 ・ アルミ合金 … き裂発生と成長が連続的 ・ 鋼、チタン … 結晶粒程度の範囲を単位としたき裂

疲労過程(微視組織的様相Ⅱ) 結晶学的き裂伝ぱ過程 (き裂進展の第二(Ⅱa)段階) き裂伝ぱ方向 試験片表面 繰返し応力 微小き裂 ⇒ 結晶粒内を伝ぱ          (すべり面に沿う) (Ⅱa) き裂進展の第二段階 き裂による応力集中のため、 き裂先端に集中的にダメージ 連続 (Ⅰ) き裂伝ぱ速度 (a ; き裂長さ、N ; 応力繰返し数) き裂先端の位置 粒界を越える ⇒ 遅い 結晶粒内にある ⇒ 速い

疲労過程(微視組織的様相Ⅲ) 巨視力学的き裂伝ぱ過程 (き裂進展の第二(Ⅱb)段階) 結晶学的微視組織の影響 (Ⅱa) 力学的因子の支配 (応力拡大係数など) (移行) 繰返し応力 試験片表面 き裂伝ぱ方向 ストライエーション(縞状模様) (Ⅰ) (Ⅱb) き裂進展の第二段階 試験片表面 図.純チタン ストライエーションの間隔  ⇒ き裂伝ぱ速度の変化に依存

疲労過程(微視組織的様相Ⅳ) 図 疲労過程の模式図 急速き裂伝ぱおよび最終破壊 (き裂進展の第二(Ⅱc)段階) き裂伝ぱ方向 試験片表面 繰返し応力 急速にき裂伝ぱ  (高強度・低延性材料    ⇒へき開、粒界割れを含む) (Ⅱa) 最終破壊 延性破壊 (ディンプル) ストライエーション (Ⅰ) (Ⅱb) (Ⅱc) き裂進展の第二段階 図 疲労過程の模式図

5.4.3 疲労き裂成長への破壊力学の適用 最終破断 安定成長 パリス(Paris)則 き裂伝ぱ速度 log(da/dN) き裂伝ぱの 5.4.3 疲労き裂成長への破壊力学の適用 応力拡大係数幅 log(ΔK) き裂伝ぱ速度 log(da/dN) 最終破断 破断直前のΔK (R ; 応力比 , Kfc ; 疲労破壊靭性) (Ⅲ) き裂伝ぱの 下限界 ΔKth ; 下限界応力拡大係数範囲 ΔKを漸減 ⇒ da/dN → 0 き裂伝ぱの下限界 (Ⅰ) m 1 安定成長 パリス(Paris)則 …(式 5.6) C, m ; 実験から得られる材料定数 多くの金属材料で、m = 2~7 (Ⅱ) ・ き裂伝ぱ抵抗の比較 ・ 疲労き裂伝ぱ寿命の推定 (静的破壊靭性Kcより小さい)

5.5 疲労強度に及ぼす種々の影響 5.5.1 切欠効果Ⅰ(切欠) 切欠(Notch) き裂の起点 ・ 切欠の底における応力集中 幾何学的な断面急変部 孔、ネジ、キー溝、段抜き部 圧入部、傷、欠陥 など 切欠(Notch) き裂の起点 ・ 切欠の底における応力集中 ・ 破壊き裂の伝ぱ・拡大 破壊 疲労強度低下 凹凸 ◎ 切欠部材の応力集中の度合い ⇒ 有限要素法 など ◎ 切欠部材の疲労限度 ⇒ 個々の部材の切欠へ     適用できる疲労強度データがほとんどない

切欠効果Ⅱ(切欠材の疲労限度) 切欠材の疲労限度の表現 ⇒ 最小断面部の公称応力を使用 ・ 引張の時 ・ 曲げの時 ⇒ 最小断面部の公称応力を使用 応力集中係数  Kt 4 0.4 0.6 0.8 1.0 0.2 1 2 3 停留き裂 破断 分岐点 非破断、き裂無し σw2 σw1 ・ 引張の時 ・ 曲げの時 疲労限度  σw1/σw0, σw2/σw0 ① 疲れ強さ σw1 平滑材(切欠なし)と同様、   巨視的き裂が発生しない限界応力 ② き裂強さ σw2 停留き裂が発生する時の、   破断限界の応力 切欠材の疲労限度 (2つある) (き裂が発生しても試験片が破断しない) 図 無次元化した疲労強さ、き裂強さと応力集中係数    の関係 1

切欠効果Ⅲ(切欠係数 Kf) 分岐点について 材料に固有な切欠半径 ρ0に依存 ① 疲れ強さ σw1 ρ>ρ0 ; 停留き裂は発生しない 応力集中係数  Kt 4 0.4 0.6 0.8 1.0 0.2 1 2 3 停留き裂 破断 分岐点 非破断、き裂無し σw2 σw1 ① 疲れ強さ σw1 ρ>ρ0 ; 停留き裂は発生しない ② き裂強さ σw2 ρ<ρ0 ; 停留き裂が発生する 疲労限度  σw1/σw0, σw2/σw0 切欠によって  疲労限度がどれくらい低下したかを表現 平滑材の疲労限度 σw0 , 切欠係数 Kf 図 無次元化した疲労強さ、き裂強さと応力    集中係数 の関係

5.5.2 寸法効果 寸法 大 ⇒ 強度 低下 材料は同じであるとすると 寸法効果 (通常) ① 応力勾配 主として2つの要因あり 5.5.2 寸法効果 ρ1 回転曲げ ρ2 寸法  大  ⇒  強度  低下 材料は同じであるとすると 寸法効果 (通常) ① 応力勾配 主として2つの要因あり ② 危険にさらされる表面積(統計学的因子) 試験片を相似的に小さくする ⇒ 1/ρ 大きくなる ⇒ 微視的欠陥が存在する確率 大 危険断面が広い ⇒ 増大する ⇒ 疲労強度の低下 ⇒ Kt は同じだから、Kf1、Kf2 は小さくなる より、 ⇒ σw1、σw2は、大きくなる

5.5.3 平均応力の影響Ⅰ(疲労限度線図①) 疲労限度線図 最大 ・ 最小変動応力がこの範囲を越えると 過度の塑性変形を生じる 5.5.3 平均応力の影響Ⅰ(疲労限度線図①) 疲労限度線図 E D -σS σS C A B 最大 ・ 最小変動応力がこの範囲を越えると 過度の塑性変形を生じる (三角形 ABC、  σS ; 降伏応力 応力振幅 平均応力 図 疲労限度線図 45° 両振り   引張り・圧縮 片振り 平均応力が作用する場合の 疲労限度 A ; 平滑材の疲労限度 σw0 B ; 真破断応力 σT σT σw0 領域 ADEC ; 安全に使用可能領域 σm σa G

平均応力・残留応力の影響Ⅱ(疲労限度線図②) 平均応力の影響 疲労限度σa 平均応力 ; σm 疲労限度 σB ; 引張り強さ σm ; 平均応力 σw0 ; 平滑材の疲労限度 図 広く使用される疲労限度線図 ゲルバー線 n = 2 … 放物線 σw0 σB 修正グッドマン線図 n = 1 … 直線 σS ゾーダーベルク線 n = 1 … σSに置き換えた 残留応力の影響 ・ 圧縮残留応力   ⇔  圧縮の平均応力が作用する ・ 引張り残留応力  ⇔  引張りの平均応力が作用する に対応する

5.6 疲労強度設計(線形累積損傷則Ⅰ) 変動応力下における疲労寿命の推定① 応力繰返しの途中で応力振幅を変化させる 応力 σ1 5.6 疲労強度設計(線形累積損傷則Ⅰ) 変動応力下における疲労寿命の推定① 応力 σ1 における疲労寿命 Nf = N1 応力 σ2 における疲労寿命 Nf = N2 応力繰返しの途中で応力振幅を変化させる 時間 応力 σ1 σ2 (a) (b) 図 2段2重重複応力 σ1をn1(n1<N1)回繰返した後、 σ2 をn2回繰返すとした時 線形累積損傷則(マイナー則) (D;累積破壊損傷値) … (式 5.10) 疲労損傷

線形累積損傷則Ⅱ 変動応力下における疲労寿命の推定② 線形累積損傷則(マイナー則) 時間 応力 σ1 σ2 (a) 図 2段2重重複応力 図 2段2重重複応力 (a)繰返し応力 しかし実際は… 高い ⇒ 低い σ1をn1(n1<N1)回繰返した後、 σ2 をn2回繰返すとした時 … (式 5.10) (1 に達すると破壊する) 時間 応力 σ1 σ2 (b) (b)繰返し応力 低い ⇒ 高い D<1 D>1 (条件によっては、D=0.1~20 ⇒ 修正が必要)

線形累積損傷則Ⅲ 応力振幅 σa 繰り返し数 N 図 線形累積損傷則、修正マイナー則 マイナー則 Σ(ni/Ni)=1 σ1 σ2 N3* 図 線形累積損傷則、修正マイナー則 マイナー則 Σ(ni/Ni)=1 σ1 σ2 N3* N3=∞ 修正マイナー則 σ3 σW n1 N1 n2 N2 n3

まとめ ※ 第五章のキーワード 疲労破壊、S-N曲線、ヒステリシスループ、パリス則、切欠き ※ 第五章のキーワード 疲労破壊、S-N曲線、ヒステリシスループ、パリス則、切欠き 切欠き係数(Kf)、寸法効果、線形累積損傷則(マイナー則)