疫学概論 二項分布 Lesson 9.頻度と分布 §B. 二項分布 S.Harano,MD,PhD,MPH.

Slides:



Advertisements
Similar presentations
北海道大学 Hokkaido University 1 情報理論 講義資料 2016/06/22 情報エレクトロニクス学科共通科目・2年次・第 1 学期〔必修 科目〕 講義「情報理論」第 5 回 第 3 章 情報源のモデル [ 後半 ] 3.5 情報源のエントロピー.
Advertisements

1 小暮研究会2 第1章ベイジアンアルゴリズ ム 2値選択 ベルヌーイ試行 尤度原理 同一性 交換可能性 尤度についてのまとめ 環境情報学部3年 渡邊洋一.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
統計学 第3回 西山. 第2回のまとめ 確率分布=決まっている分布の 形 期待値とは平均計算 平均=合計 ÷ 個数から卒業! 平均=割合 × 値の合計 同じ平均値でも 同じ分散や標準偏差でも.
Wilcoxon の順位和検定 理論生態学研究室 山田 歩. 使用場面 2 標本 離散型分布 連続型分布(母集団が正規分布でない時など 効果的) ただパラメトリックな手法が使える条件がそ ろっている時に、ノンパラメトリックな手法 を用いると検出力(対立仮説が正しいときに 帰無仮説を棄却できる確率)が低下するとい.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
疫学概論 ポアソン分布 Lesson 9.頻度と分布 §C. ポアソン分布 S.Harano,MD,PhD,MPH.
経済統計学 第2回 4/24 Business Statistics
Lesson 21. 健康政策と疫学 §B. 集団データを用いた 疫学研究 疫学概論 集団データを用いた疫学研究
第6章 数え上げ理論と確率 B4 酒井 隆行.
疫学概論 臨床生命表 Lesson 7. 生命表 §C. 臨床生命表 S.Harano,MD,PhD,MPH.
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
全加算回路 A, Bはそれぞれ0または1をとるとする。 下位桁からの繰り上がりをC1とする。(0または1)
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計学 11/13(月) 担当:鈴木智也.
Microsoft Excel 2010 を利用した 2項分布の確率計算
疫学概論 現代生命表 Lesson 7. 生命表 §B. 現代生命表 S.Harano,MD,PhD,MPH.
ホーエル『初等統計学』 第5章 主要な確率分布
統計解析 第9回 第9章 正規分布、第11章 理論分布.
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
疫学概論 無作為化比較対照試験 Lesson 14. 無作為化臨床試験 §A. 無作為化比較対照試験 S.Harano,MD,PhD,MPH.
第2章補足Ⅱ 2項分布と正規分布についての補足
統計学 11/19(月) 担当:鈴木智也.
第7回 二項分布(続き)、幾何分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
「データ学習アルゴリズム」 第2章 学習と統計的推測 報告者 佐々木 稔 2003年5月21日 2.1 データと学習
第2章 確率と確率分布 統計学 2006年度.
確率・統計輪講資料 6-5 適合度と独立性の検定 6-6 最小2乗法と相関係数の推定・検定 M1 西澤.
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計学 11/08(木) 鈴木智也.
統計数理 石川顕一 10/17 組み合わせと確率 10/24 確率変数と確率分布 10/31 代表的な確率分布
疫学概論 測定の信頼性 Lesson 20. 評価の要件 §B. 測定の信頼性 S.Harano, MD,PhD,MPH.
疫学概論 横断研究 Lesson 11. 記述疫学 §A. 横断研究 S.Harano,MD,PhD,MPH.
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
相関分析.
第3回 確率変数の平均 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
確率・統計Ⅰ 第3回 確率変数の独立性 / 確率変数の平均 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
正規分布確率密度関数.
疫学概論 交絡 Lesson 17. バイアスと交絡 §A. 交絡 S.Harano, MD,PhD,MPH.
確率論の基礎 「ロジスティクス工学」 第3章 鞭効果 第4章 確率的在庫モデル 補助資料
超感覚的知覚の一つである テレパシー能力(者)の存在性 についての統計学的検証
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
25. Randomized Algorithms
ボルツマンマシンの定義 ボルツマンマシン(Boltzmann machine)は、スピン・システムをヒントに作られたモデルである。
疫学概論 測定の信頼性 Lesson 20. 評価の要件 §B. 測定の信頼性 S.Harano, MD,PhD,MPH.
疫学概論 情報の要約 Lesson 3. 情報の要約 (率、比、割合) S.Harano,MD,PhD,MPH.
ウィルスって どの位感染しているのかな? 菊池研究室  小堀智弘.
情報経済システム論:第13回 担当教員 黒田敏史 2019/5/7 情報経済システム論.
最尤推定・最尤法 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
疫学概論 ポアソン分布 Lesson 9.頻度と分布 §C. ポアソン分布 S.Harano,MD,PhD,MPH.
疫学概論 頻度と分布 Lesson 9. 頻度と分布 §A. 頻度または度数 S.Harano,MD,PhD,MPH.
疫学概論 カプラン・マイヤー法 Lesson 8. その他の生存分析 §A. カプラン・マイヤー法 S.Harano,MD,PhD,MPH.
ガウス分布における ベーテ近似の理論解析 東京工業大学総合理工学研究科 知能システム科学専攻 渡辺研究室    西山 悠, 渡辺澄夫.
物理フラクチュオマティクス論 応用確率過程論 (2006年4月11日)
疫学概論 方法論的問題点(患者対照研究) Lesson 13. 患者対照研究 §B. 方法論的問題点 S.Harano,MD,PhD,MPH.
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
第2章 統計データの記述 データについての理解 度数分布表の作成.
疫学概論 疫学研究の目的 Lesson 1. 疫学研究 §A. 疫学研究の目的 S.Harano,Md.PhD,MPH.
Microsoft Excel 2010 を利用した 2項分布の確率計算
統計現象 高嶋 隆一 6/26/2019.
第6回 ベルヌイ試行、二項分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
疫学概論 横断研究 Lesson 11. 記述疫学 §A. 横断研究 S.Harano,MD,PhD,MPH.
Time Reversal E-Text: pp.80-83(PDF: pp.49-50) FM08002 太神 諭
Presentation transcript:

疫学概論 二項分布 Lesson 9.頻度と分布 §B. 二項分布 S.Harano,MD,PhD,MPH

確率分布 各事象に対して一定の規則に従って数値をとる変数を確率変数という。 確率変数の取りうる分布を確率分布という。 確率分布にはデータの種類によって、離散確率分布と連続確率分布がある。

二項分布 Binominal Distribution 離散分布の一種 二分割または二値の事象、つまり考えられる結果がただ2つ(例えば、表か裏、成功か失敗、死か生) p = 「成功」の確率 q = 「失敗」の確率 = 1-p n = 独立事象の数

二項分布(続き) 確率変数Xの値、つまり「成功」がk回観察される確率、すなわち二項分布での確率密度 P(k) は、

二項分布の根幹となる仮定 一連の調査や実験は n 回の独立した観察よりなる。 それぞれの観察結果は独立している。 結果の確率 p はそれぞれの観察において同じである。(観察する度に同じ確率でその結果が起こりうる。)

二項分布の例 ある薬剤でかぜ症状が軽快する確率を 0.7 とする。 10名の患者が無作為に選ばれ、その薬剤を与えられた。 考えられる結果は何で、その確率は?

二項分布の例(続き) n = 10 名の患者 p = 軽快の確率 = 0.7 q = 軽快しない確率 = 0.3 k = 軽快した患者の数

二項分布の例(続き) 10名とも軽快する確率

二項分布の例(続き) 9名が軽快する確率

二項分布の例(続き) 8名が軽快する確率

二項分布の例(続き) 同様に

二項分布のグラフ例

二項分布の例(続き) 8名以上の患者がこの薬剤で軽快する確率は、 P(8)+P(9)+P(10)  = 0.23347+0.12106+0.02825 ≒0.383

二項分布の性質 パラメータ p と観察数 n で定義される分布である。 P(k) は常に負の値にはならない。