寺尾 敦 青山学院大学社会情報学部 atsushi@si.aoyama.ac.jp Twitter: @aterao 2012/12/10 人間科学概論 第12回:心理学と経済学の融合 寺尾 敦 青山学院大学社会情報学部 atsushi@si.aoyama.ac.jp Twitter: @aterao.

Slides:



Advertisements
Similar presentations
第 11 回 モデルとしての権限配分 - 不完備契約 (1) おまえのものは誰のもの ?. 今日学ぶこと  情報の非対称性  アドバースセレクションモデル  良い人か悪い人かが観察できない  モラルハザードモデル  頑張ったかどうか観察できない  頑張った結果が必ずしも成果に結びつかない.
Advertisements

ゲーム理論の誕生と発展 von Neumann & Morgenstern The Theory of Games and Economic Behavior.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
多々納 裕一 京都大学防災研究所社会システム研究分野
第4章:資産価格とそのバブル P.115~137 08bc134k 畑 優花.
寺尾 敦 青山学院大学社会情報学部 Fisher の直接確率法 寺尾 敦 青山学院大学社会情報学部
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
初級ミクロ経済学 -消費者行動理論- 2014年9月29日 古川徹也 2014年9月29日 初級ミクロ経済学.
多々納 裕一 京都大学防災研究所社会システム研究分野
価格戦略と消費者心理.
認知科学ワークショップ 第2回 記憶(1).
第9章 ファイナンスの基本的な分析手法 ファイナンスの分析手法は、人々が金融市場に参加する際の意思決定に役立つ 扱うトピックは
実証分析の手順 経済データ解析 2011年度.
Pattern Recognition and Machine Learning 1.5 決定理論
ミクロ経済学の基礎 経済学A 第1回 畑農鋭矢.
情報は人の行為に どのような影響を与えるか
執筆者:市川 伸一 授業者:寺尾 敦 atsushi [at] si.aoyama.ac.jp
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
執筆者:市川伸一 授業者:寺尾 敦 atsushi [at] si.aoyama.ac.jp
分布の非正規性を利用した行動遺伝モデル開発
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
初級ミクロ経済学 -消費者行動理論- 2014年10月3日 古川徹也 2014年10月3日 初級ミクロ経済学.
行動経済学による分析 ~なぜ人は「タダ」に翻弄されてしまうのか~ 古川ゼミ
初級ミクロ経済学 -ゲーム理論入門- 2014年12月19日 古川徹也 2014/12/19.
社会心理学のStudy -集団を媒介とする適応- (仮)
1中垣 啓○ ・ 2伊藤 朋子 1早稲田大学 ・ 2早稲田大学大学院 教育学研究科
初級ミクロ経済学 -ゲーム理論入門- 2014年12月15日 古川徹也 2014年12月15日 初級ミクロ経済学.
統計リテラシー教育における 携帯端末の利用
統計学 第3回 10/11 担当:鈴木智也.
プロジェクトの選択基準 と CBAの役割と限界
寺尾 敦 青山学院大学社会情報学部 社会統計 第8回:多重比較 寺尾 敦 青山学院大学社会情報学部
特殊講義(経済理論)B/初級ミクロ経済学
女子大学生におけるHIV感染症のイメージと偏見の構造
統計学の授業でのセカンド モニタとしてのiPhoneの使用
集団における適応 知識構造論講座 下嶋研究室          M1 関本 和弘.
当選確率が50%と5%の宝くじ どっちを買うべき?
この授業のねらい 個人的問題から、社会的課題までを、 「行動分析学」(Behavior Analysis) の枠組みでとらえ、具体的な対策について発言提案・実践することができる。
プロジェクトの選択基準 と CBAの役割と限界
仮想評価(仮想市場)法 CVM(Contingent Valuation Method)
新ゲーム理論 第Ⅰ部 非協力ゲームの理論 第1章 非協力ゲームの戦略形
心理学 武庫川女子大学文学部教育学科 北口勝也 http: //www. mukogawa-u.ac.jp/~kitaguti.
要約 きりん、まぐろ、PB.
シミュレーション論 Ⅱ 第15回 まとめ.
仮想評価(仮想市場)法 CVM(Contingent Valuation Method)
執筆者:伊東 昌子 授業者:寺尾 敦 atsushi [at] si.aoyama.ac.jp
教師にとっての「生の質」 青木直子(大阪大学).
アマルティヤ・センの「財とその利用」 財、その特性と機能 p21~p22 特性 =財がもつ望ましい性質・利用。
「選挙の大切さについて」 資料モデル 1 選挙制度の意義や目的について、選挙の歴史や制度の特徴 などを踏まえてわかりやすく説明する。
『組織の限界』 第1章 個人的合理性と社会的合理性 前半
理論研究:言語文化研究 担当:細川英雄.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
クロス表とχ2検定.
仮想評価(仮想市場)法 CVM(Contingent Valuation Method)
領域普遍的アプローチから見たGigerenzer:Adaptive Thinking の射程と限界
消費者行動.
統計学  第9回 西 山.
数理統計学 西 山.
比較政治学における パレスチナ研究 ~交渉ゲーム理論を中心に~
執筆者:難波和明 授業者:寺尾 敦 atsushi [at] si.aoyama.ac.jp
仮想評価(仮想市場)法 CVM(Contingent Valuation Method)
テキスト理解,論点設定, 論述のスキルを高める アクティブ・ラーニング
中垣 啓1 ・ 伊藤 朋子2 (1早稲田大学 ・ 2早稲田大学大学院教育学研究科)
企業ファイナンス 2009年10月21日 実物投資の意志決定(2) 名古屋市立大学 佐々木 隆文.
情報数理Ⅱ 第10章 オートマトン 平成28年12月21日.
2010応用行動分析(3) 対人援助の方法としての応用行動分析
アルゴリズム ~すべてのプログラムの基礎~.
Presentation transcript:

寺尾 敦 青山学院大学社会情報学部 atsushi@si.aoyama.ac.jp Twitter: @aterao 2012/12/10 人間科学概論 第12回:心理学と経済学の融合 寺尾 敦 青山学院大学社会情報学部 atsushi@si.aoyama.ac.jp Twitter: @aterao

今日の学習 人間の直感的な確率判断は,数学的正解と大きく異なるという意味で,非合理的である. ひとつの説明として,ヒューリスティックス(heuristics)による判断がされるため. 人間の意思決定は,経済学が仮定した期待効用に従わないという意味で,非合理的である. 人間の非合理性を前提とし,現実の行動を説明する行動経済学の誕生.

病院問題 ある町には,2つの病院がある.大病院では毎日約45人,小病院では約15人の赤ん坊が生まれる.当然ながら,約50%の赤ん坊が男児である.しかし,正確には男児の出生率は日によって異なっており,50%より高い日もあれば低い日もある.ところで,1年のうちで,60%以上が男児であったという日の数は,大病院と小病院ではどちらが多いだろうか.(大病院?小病院?どちらも同じ?)

リンダ問題 リンダは31歳で独身,ものをはっきり言うタイプで,頭が良い.大学では哲学を専攻した.学生として,差別問題や社会主義の問題に強い関心を持ち,反核デモにも参加した.以下の選択肢を,可能性が高い(probable)と思う順に並べよ.(次のスライド)

リンダ問題(選択肢) リンダは小学校の教師である 書店で働いており,ヨガのクラスを取っている 女性解放運動に熱心である 精神医学のソーシャルワーカーである 女性投票者同盟のメンバーである 銀行の現金出納係である 保険のセールスマンである 銀行の現金出納係であり,女性解放運動に熱心である

代表性ヒューリスティック 代表性(representativeness):もっとも典型的な事象との類似度 2012/12/10 代表性ヒューリスティック 代表性(representativeness):もっとも典型的な事象との類似度 標本と母集団,事例とカテゴリ,行為と行為者,あるいはより一般には,結果とモデルの間の一致の程度である(Tversky & Kahneman, 1983) 代表性ヒューリスティック:人間は,確率判断を求められたとき,代表性により判断する. 代表性の高い事例は,必ずしも高頻度(高確率)ではない.例:ハリウッドの女優にとって,「4回以上の離婚歴がある」は,「民主党に投票する」よりも代表的. Tversky, A., & Kahneman, D. (1983). Extensive versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90, 293-315.

代表性 病院問題での代表性ヒューリスティック リンダ問題での代表性ヒューリスティック 2012/12/10 代表性 病院問題での代表性ヒューリスティック 母集団での男児の出生率は50%.これと近いデータは代表性が高い. 少数の法則(low of small numbers):小さな標本でも母集団の性質を代表すると考えてしまうバイアス. リンダ問題での代表性ヒューリスティック リンダは,それぞれのクラス(小学校教師,銀行員,女性解放運動に熱心な銀行員,・・・)の典型的なメンバーにどれくらい似ているか? 代表性に基づいて,P(T&F) > P(T) と判断される. T: bank teller, F: feminist movement

huristics-and-biases アプローチ 2012/12/10 huristics-and-biases アプローチ Amos Tversky と Daniel Kanemanによる主張(Tversky & Kahneman, 1974) Many decisions are based on beliefs concerning the likelihood of uncertain events such as the outcome of an election, the guilt of a defendant, or the future value of the dollar. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124-1131.

heuristics-and-biases アプローチ … people rely on a limited number of heuristic principles which reduce the complex tasks of assessing probabilities and predicting values to simpler judgment operations. In general, these heuristics are quite useful, but sometimes they lead to severe and systematic errors.

タクシー問題 ある街のタクシーの85%は緑で,15%は青である.あるときタクシーによるひき逃げ事件が起きた.そこに目撃者が現れて,「青のタクシーがひいた」と証言した.この証人がどれくらい正確かを,同じような状況下でテストしたところ,80%の場合は正しく色を識別できるが,20%の場合は実際と逆の色を言ってしまうことがわかった.さて,証言どおり,青タクシーが犯人である確率はどれだけか.

タクシー問題 事前確率(目撃情報がない時点での確率)の,緑85%,青15%を考慮する必要がある. それぞれのタクシーが事故を起こす確率はすべて等しいとする. しかし,ひとはこれを考慮しない.(基準率無視[base-rate fallacy]) 代表性ヒューリスティックは,よい仮説を好む. ある事象が生じるメカニズムによって,典型的に生じることが好まれる.青タクシーがひいたとしたら,「青タクシーがひいた」という証言は代表性が高い.

確率判断の研究のインパクト 1960年代ごろまでは,人間の直感的な確率判断はほぼ正しいと考えられてきた. 一般的に言えば,人間の思考は(数学的な意味で)合理的だと考えられてきた. しかし,人間の確率判断はしばしば不正確で,非合理的であった. Tversky と Kahneman は,誤った確率推論は個別的に生じるのではなく,ヒューリスティックによって体系的に生じると主張した.

確率判断を教える:図の工夫 例題:ある病気の患者は全人口の2%である.この病気にかかっているかどうかを調べるために,ある試薬を与える.この試薬はこの病気にとても敏感で,これにかかっている人の95%に反応があらわれる.ただし,この病気にかかっていない人の10%にも,反応があらわれてしまう.この試薬によって反応があらわれた人が,本当にこの病気にかかっている確率はいくらか?

ルーレット図(Ichikawa, 1989) P{病気}=0.02 P{病気でない}=0.98 円の全面積 =1 は,実際はもっと小さい領域 2012/12/10 ルーレット図(Ichikawa, 1989) P{病気}=0.02 円の全面積 =1 Ichikawa, S. (1989). The role of isomorphic schematic representation in the comprehension of counterintuitive Bayesian problems. Journal of Mathematical Behavior, 8, 269-281. P{病気でない}=0.98 は,実際はもっと小さい領域

P{病気|陽性} P{病気 and 陽性} P{病気}*P{陽性|病気} =0.02×0.95 = P{病気でない and 陽性} P{not 病気}*P{陽性|not 病気} =0.98×0.10 P{病気|陽性} + =

ベイスの定理 ルーレット図は タクシー問題でも使える

2012/12/10 確率判断を教える:進化的アプローチ 進化的に,人間は確率を理解するようにはできていない.しかし,頻度ならわかる(Gigerenzer & Hoffrage, 1995).頻度を使って教える. 人間は確率的推論を実行できる認知的アルゴリズムを進化させてきた. しかし,それは確率やパーセンテージを扱うようにはできていない. このアルゴリズムは,一連の事象において実際に経験する,頻度を扱うようにできている. Gigerenzer, G., & Hoffrage, U. (1995). How to improve bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684-704.

行動経済学の誕生 近年までの経済理論は,人間が合理的な判断をするということを前提にしてきた. しかし,人は合理的でないのだとしたら,それを前提に経済理論を作らなくてはならない. 行動経済学,実験経済学 行動ファイナンス 神経経済学(心理学+経済学+脳科学)

伝統的な経済理論の仮定・主張 人間の経済行動は合理的で,自己の利得を最大限に追求する. それでは,次の問題を考えてみてほしい.

最終提案ゲーム AさんとBさんは1万円を分け合う.どのように分けるかを決めるのはAさんである.Bさんは分け前が不満なら受け取りを拒否できる.Bさんが拒否するとAさんは1円ももらえない.Aさんはどんな提案をすべきか?

最終提案ゲーム 完全に合理的で,自己の利益のみ追求するのならば, 実際にこのような判断をする人はほとんどいない, 「Bさんに1円だけ渡して,9,999円をもらう」が正解. Bさんは,拒否して0円よりは,1円をよしとするはず. 実際にこのような判断をする人はほとんどいない,

意思決定における非合理性 意思決定では,一般に結果は確率的である. 不確かな事象では,「利得」をどのように判断するのか? どのような結果になるかは不確か. そういう状況で,どうすれば得かを考える. 不確かな事象では,「利得」をどのように判断するのか? 次の2つの問題に回答.

問題1 あなたは2万円をもらいました.次にクジを引かなければなりません.どちらのクジをえらびますか? 確実に5,000円をもらえる 確率25%で2万円をもらえるが,確率75%で何も得られない

問題2 あなたは4万円をもらいました.次にクジを引いて罰金を払わなければなりません.どちらのクジをえらびますか? 確実に罰金1万5000円を払う 確率25%で罰金を免除されるが,確率75%で罰金2万円を取られる

実験の結果(’08 社会情報入門 I) リスク回避・追及の 選択者数(人) 質問1:金増加 質問2:金損失 選択1:リスク回避 78 39 選択2: リスク追及 45 84

得な時は臆病,損な時は大胆 どちらの課題でも選択肢の意味は同じ 人間行動の特徴 確実に2万5千円を手にする選択 確率75%で2万円,確率25%で4万円を手にする選択(期待値は2万5千円) 人間行動の特徴 お金が増える状況ならリスク回避(risk averse) 損をする状況ならリスク追求(risk seeking) 利得と損失の間でリスク指向性が異なることを,反射効果(reflection effect)と呼ぶ.

不確かな事象での利得計算 不確かな事象では,「利得」を何に基づいて判断するのか? 明らかに,期待値ではない. 期待効用(expected utility)を計算しているという主張.(von Neumann & Morgenstern, 1944) 期待値の計算では5,000円といった金額をそのまま用いる. 期待効用の計算では5,000円といった金額の「嬉しさ」「個人的価値」を計算する.

2万円の効用の 1/4 は,5千円の効用より小さい. 利得状況での期待効用 利得状況選択肢1:確実に5000円をもらえる 期待効用は,1 × u(5,000円) 利得状況選択肢2:確率25%で2万円をもらえるが,確率75%で何も得られない. 期待効用は,0.25 × u(2万円) + 0.75× u(0円) = 0.25 × u (2万円) 選択肢1を選ぶのだから, u(5,000円) > 0.25 × u (2万円) u(0円)= 0 とする 2万円の効用の 1/4 は,5千円の効用より小さい.

利得状況での効用関数 効用 金額 5千円 2万円

-2万円の効用の 3/4 は,-1万5千円の効用より大きい. 損失状況での期待効用 損失状況選択肢1:確実に罰金1万5000円を払う 期待効用は,1 × u(-15,000) 損失状況選択肢2:確率25%で罰金を免除されるが,確率75%で罰金2万円を取られる 期待効用は,0.25×u(0) + 0.75×u(- 20,000) = 0.75 × u (- 20,000) 選択肢2を選ぶのだから, u(- 15,000円) < 0.75 × u (- 20,000円) -2万円の効用の 3/4 は,-1万5千円の効用より大きい.

損失状況での効用関数 効用 ―2万円 ― 1万5千円 金額

規範としての期待効用理論 期待効用理論は経済学での規範的・標準的な人間観となった.期待効用を最大化させる意思決定者は合理的である. ところが,期待効用理論の原則に矛盾する事態(アノマリー)があることが指摘された. アレの逆説 フレーミング効果

アレの逆説 選択肢A:確実に100万円もらう 選択肢B:確率0.1で250万円もらい,確率0.89で100万円もらい,確率0.01で何ももらわない. 一般には選択肢Aが好まれる. 1 ×u(100万) > 0.1 ×u(250万) + 0.89×u(100万) したがって,0.11×u(100万円) > 0.1×u(250万)

アレの逆説 選択肢C:確率0.11で100万円もらい,確率0.89で何ももらわない. 選択肢D:確率0.1で250万円もらい,確率0.9で何ももらわない. 一般には選択肢Dが好まれる.しかし, 0.11×u(100万円) > 0.1×u(250万) だったはず.

フレーミング効果 「アジア病気問題」 アジアで伝染病が流行し,600名の命が危機にある.次の結果をもたらす対策A,Bのどちらを選ぶか? A:400人が死ぬ B:確率1/3で死者ゼロで,確率2/3で600人が死ぬ. 多くの人はBを選択した (Tversky &Kahnemann, 1983)

フレーミング効果 「アジア病気問題」 アジアで伝染病が流行し,600名の命が危機にある.次の結果をもたらす対策C,Dのどちらを選ぶか? C:200人が助かる D:確率1/3で600人が助かって,確率2/3で誰も助からない. 多くの人はCを選択した (Tversky &Kahnemann, 1983) 客観的には先ほどと 同一問題のはず

フレーミング効果 合理的な意思決定者は,同一の決定場面において,常に同じ選択をしなければならない. フレーミング効果は現実の生活に入り込んでいるかもしれない. 「75%赤身」のひき肉は,「25%脂肪」のひき肉よりも高品質と判断された.試食の機会を与えると,前者の方が高評価を得た.(Levin & Gaeth, 1998)

記述的理論の必要性 経済学が合理性の規範理論(「どうあるべきか」)としてきた期待効用理論は,実際の人間行動を説明できない. 規範理論を追求する一方で,実際の行動を示す記述理論が必要. 「非合理」な行動も,それなりに合理的な行動に思える. 記述にとどまらず,説明することも重要.

プロスペクト理論 プロスペクト理論:アノマリーを説明する,代表的な記述理論.期待効用理論を拡張. (Kahnemann & Tversky, 1979, Econometrica ) 参照点(意思決定者の判断基準点)を原点とした価値関数. 反射効果を表現.ある金額(例:1万円)を損したときの不満足は,それを得た時の満足よりもずっと大きい. 確率の加重.小さな確率は過大評価され,中くらいあるいは高い確率は過小評価される.

プロスペクト理論の価値関数 図の出典:日経ビジネスAssocie 2008年7月15日号

プロスペクト理論の確率加重関数 図の出典:日経ビジネスAssocie 2008年7月15日号

確率加重についての参考研究 アメリカ合衆国では,交通事故での死亡者が1年間におよそ50,000人と聞かされたあと,他のさまざまな原因での死亡者数を推定するよう求めた.(Lichtenstein et al., 1978) 比較的よくある死因は過小評価,まれな死因は過大評価された. これは利用可能性ヒューリスティックによって説明される.例:大きく報道されるまれな病気

ボツリヌス中毒 天然痘

プロスペクト理論の初期の記述には,「めったに起こりそうもない出来事は無視されるか,または過大な重みをつけられる」という主張が含まれていた. (カーネマン『ファスト&スロー』下巻p.134)

「まれな事象の確率がよく(いつもではない)過大評価されるのは,記憶の確証バイアスが働くからである.」 . (カーネマン『ファスト&スロー』下巻p.149) 可能性が明示的に提示された場合 激しい不安を伴う場合 鮮明なイメージを伴う場合 具体的な頻度表現や明示的な説明がなされる場合

「私たちの大半は,原子炉のメルトダウンを心配して時間を費やすようなことはしないし,見知らぬ親戚から巨額の遺産を残されるといった空想にふけることもしない.だがそうした稀な事態がありうるかもしれないとなったら,おそらくは確率をはるかに上回る重みを付けてしまうだろう.」(カーネマン『ファスト&スロー』下巻p.124)

プロスペクト理論による アレの逆説の説明 アレの逆説は無矛盾であることが示された. 選択肢A:確実に100万円もらう 選択肢B:確率0.1で250万円もらい,確率0.89で100万円もらい,確率0.01で何ももらわない.

選択肢C:確率0.11で100万円もらい,確率0.89で何ももらわない. 選択肢D:確率0.1で250万円もらい,確率0.9で何ももらわない.

プロスペクト理論による フレーミング効果の説明 選択肢A, B 「死ぬ」という表現がされることで,だれも犠牲にならない状況が,価値関数における参照点となる. 「死者をどれだけ減らせるか」という損失状況に読めるため,リスク追求となる. 選択肢C, D 「助かる」という表現がされることで,何もしなければ600人が犠牲になる状況が参照点となる. 「何人助けられるか」という利得状況に読めるため,リスク回避となる.

2008年7月15日号 図書館で電子版記事を 閲覧・ダウンロード可能

小テスト 少年の(凶悪)犯罪が増加しているといわれることがあるが,実際のデータでは,これを支持する証拠は乏しい.むしろ,近年の少年犯罪は減少傾向にある.少年による(凶悪)犯罪の発生数は,なぜ実際と異なって認識されるのであろうか?

小テスト2 プロスペクト理論の価値関数を図示して,「アジア病気問題」での意思決定における反射効果を説明しなさい.プロスペクト理論による「アレの逆説」の説明での,V( ) という記号を用いること.確率は,加重することなく,そのまま用いてよい.

社会情報学部での融合領域 3回の講義で扱った融合 心理学+教科教育 心理学+経済学 心理学+脳科学 プログラミングのスキルを生かして学習支援システムを構築するなど,社会情報学部ならではの融合的な研究をしてほしい.

H. A. Simonを目指そう Simonには,たぶん,なれないけれど・・・ 文系・理系という区分を超えよう 社会の問題は,文理に分けて出題されない 独創的な問題解決アプローチを考えよう 広い分野の人と交流しよう 留学を考えている人は,Carnegie Mellon大学も候補に入れてください.