大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>

Slides:



Advertisements
Similar presentations
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
Advertisements

数理統計学 西 山. 前回のポイント<ルート N の法則> 1. データ(サンプル)の合計値 正規分布をあてはめる ルート N をかけて標準偏差を求める 2. データ(サンプル)の平均値 正規分布を当てはめる 定理8がポイント ルート N で割って標準偏差を求める.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
『わかりやすいパターン認 識』 第 5 章 特徴の評価とベイズ誤り確率 5.4 ベイズ誤り確率と最近傍決定則 発表日: 5 月 23 日(金) 発表者:時田 陽一.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
数理統計学  第9回 西山.
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
経済統計学 第2回 4/24 Business Statistics
数理統計学(第四回) 分散の性質と重要な法則
数理統計学 西 山.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計学  第7回 西 山.
統計学 11/13(月) 担当:鈴木智也.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
情報の扱いのける 数学的基礎 確率 エントロピー 統計 確率分布 形式言語理論 計算量の理論.
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
第2章補足Ⅱ 2項分布と正規分布についての補足
統計学 11/19(月) 担当:鈴木智也.
数理統計学  第8回 第2章のエクササイズ 西山.
母集団平均値の区間推定 大標本の区間推定 小標本の区間推定.
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
確率・統計輪講資料 6-5 適合度と独立性の検定 6-6 最小2乗法と相関係数の推定・検定 M1 西澤.
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学  第6回 西山.
統計数理 石川顕一 10/17 組み合わせと確率 10/24 確率変数と確率分布 10/31 代表的な確率分布
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
寺尾 敦 青山学院大学社会情報学部 エクセルでの正規分布の グラフの描き方 寺尾 敦 青山学院大学社会情報学部
数理統計学 第11回 西 山.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
データのバラツキの測度 レンジと四分位偏差 分散と標準偏差 変動係数.
寺尾 敦 青山学院大学社会情報学部 エクセルでの正規分布の グラフの描き方 寺尾 敦 青山学院大学社会情報学部
第11回 中心極限定理 と 大数の法則 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均
第3回 確率変数の平均 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
確率・統計Ⅰ 第3回 確率変数の独立性 / 確率変数の平均 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
正規分布確率密度関数.
混合ガウスモデルによる回帰分析および 逆解析 Gaussian Mixture Regression GMR
確率論の基礎 「ロジスティクス工学」 第3章 鞭効果 第4章 確率的在庫モデル 補助資料
寺尾 敦 青山学院大学社会情報学部 エクセルでの正規分布の グラフの描き方 寺尾 敦 青山学院大学社会情報学部
第3章 統計的推定 (その1) 統計学 2006年度.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
数理統計学 西 山.
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
統計現象 高嶋 隆一 6/26/2019.
Presentation transcript:

大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x> n を大きくすれば大きくするほど <x> は m に近づく 大数の法則 (広辞苑によれば 「たいすう の ほうそく」)

<x> は,平均 m,分散 s2 / n 中心極限定理 母集団(平均 m,分散 s2) 標本(サンプリング) ・・・ n 個(平均 <x>) ・・・ n 個(平均 <x>’) ・・・ <x> は,平均 m,分散 s2 / n の正規分布にしたがう 中心極限定理

変数が x から x + dx の微小区間中の値をとる確率 P(x)dx 正規分布(その1) 変数が x から x + dx の微小区間中の値をとる確率 P(x)dx 確率 P(x)dx を区間の長さ dx で割ったものが確率密度 P(x) 平均 m ,分散 s2 の正規分布の確率密度関数 Excel では NORMDIST(x,m,s,0) で 正規分布の P(x) が計算できる

正規分布(その2) m m + s P(x) x

正規分布の規格化 確率密度関数は一般に次の規格化条件を満たす 正規分布の場合

確率の計算(その1) x が a < x < b の範囲の値をとる確率 P(a < x < b) P(x) x

累積確率(その1) x が の範囲の値をとる確率 累積確率という Excel では NORMDIST(c,m,s,1) で P(x < c)が計算できる P(x) x

累積確率(その2) x が の範囲の値をとる確率 P(x) Excel では 1-NORMDIST(c,m,s,1) x x が の範囲の値をとる確率 P(x) Excel では NORMDIST(b,m,s,1)-NORMDIST(a,m,s,1) x

標準正規分布(その1) 平均 m ,分散 s2 の正規分布 x の代わりに基準値 z を用いる 平均 0 ,分散 1 の正規分布 標準正規分布という

標準正規分布(その2) P(x) 1 z

標準正規分布の累積確率 z が の範囲の値をとる確率 Excel では NORMSDIST(c) P(z) 逆関数 となるような c の値 Excel では NORMSINV(p) z