3章 Analysing averages and frequencies (前半 p )

Slides:



Advertisements
Similar presentations
計測工学 - 測定の誤差と精度 2- 計測工学 2009 年 4 月 28 日 Ⅱ限目. 授業内容 2.1 数値計算における誤差 2.2 計算過程での誤差 2.3 測定の精度.
Advertisements

東京大学医学系研究科 特任助教 倉橋一成 1.  背理法を使った理論展開 1. 帰無仮説( H0 、差がない)が真であると仮定 2. H0 の下で「今回得られたデータ」以上の値が観測でき る確率( P 値)を計算 3. P 値が 5% 未満:「 H0 の下で今回のデータが得られる可 能性が低い」
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
生物統計学・第 5 回 比べる準備をする 標準偏差、標準誤差、標準化 2013 年 11 月 7 日 生命環境科学域 応用生命科学 類 尾形 善之.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
計量的手法入門 人材開発コース・ワークショップ (IV) 2000 年 6 月 29 日、 7 月 6 ・ 13 日 奥西 好夫
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
生物統計学・第 4 回 比べる準備をする 平均、分散、標準偏差、標準誤差、標準 化 2015 年 10 月 20 日 生命環境科学域 応用生命科学類 尾形 善之.
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
統計学 西山. 平均と分散の標本分布 指定した値は μ = 170 、 σ 2 = 10 2 、データ数は 5 個で反復 不偏性 母分散に対して バイアスを含む 正規分布カイ二乗分布.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
統計学入門 4-10章 チーム小樽 担当:いぬき.
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
疫学概論 ポアソン分布 Lesson 9.頻度と分布 §C. ポアソン分布 S.Harano,MD,PhD,MPH.
統計解析 第7回 第6章 離散確率分布.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計学  第7回 西 山.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
Bassモデルにおける 最尤法を用いたパラメータ推定
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計学 11/30(木).
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
Effect sizeの計算方法 標準偏差が正確に求められるほど症例数が十分ないときは、測定しえた症例の中で、最大値と最小値の値の差を4で割り算した値を代用することが出来る。この場合には正規分布に従うことを仮定することになる。
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
行動計量分析 Behavioral Analysis
寺尾 敦 青山学院大学社会情報学部 社会統計 第12回 重回帰分析(第11章前半) 寺尾 敦 青山学院大学社会情報学部
統計学 12/13(木).
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学 11/08(木) 鈴木智也.
統計学  第6回 西山.
1時限で理解する 統計の基礎 応用情報処理II 2015/12/4 講師:新居雅行.
社会福祉調査論 第9講 母集団の推計 12月14日.
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
ガウス過程による回帰 Gaussian Process Regression GPR
応用数理工学特論 期末発表 西口健太郎 渡邉崇充
相関分析.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計学 西 山.
中澤 港 統計学第4回 中澤 港
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
数理統計学 西 山.
法数学勉強会 2016/06/15 京都大学(医)統計遺伝学分野 山田 亮
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
ウィルスって どの位感染しているのかな? 菊池研究室  小堀智弘.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
ベイズ最適化 Bayesian Optimization BO
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
最尤推定・最尤法 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
統計学  第9回 西 山.
疫学概論 ポアソン分布 Lesson 9.頻度と分布 §C. ポアソン分布 S.Harano,MD,PhD,MPH.
数理統計学 西 山.
推定と予測の違い 池の魚の体重の母平均を知りたい→推定 池の魚を無作為に10匹抽出して調査 次に釣り上げる魚の体重を知りたい→予測
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
臨床統計入門(1) 箕面市立病院小児科  山本威久 平成23年10月11日.
混合ガウスモデル Gaussian Mixture Model GMM
外れ値検出 Outlier Detection 外れサンプル検出 Outlier Sample Detection
Presentation transcript:

3章 Analysing averages and frequencies (前半 p. 63 - 77 ) 担当:渡辺正宏(FSC)

Frequentist的な方法 (BOX 3.1) ある残存林内の樹木の平均直径が知りたい Frequentist的な方法 (BOX 3.1) ある残存林において10本の樹木を測定したところ、 サンプルの平均(  )   =563/10 平均( x )と標準誤差(se)から信頼区間を計算すると = 56.3 ±1.96*4.3 95%信頼区間 46.6-66.0 ・木の直径が正規分布に従うと仮定 ・95%信頼区間の解釈:ある集団についてサンプリングと信頼区間の計算を繰り返した場合、得られたいくつかの信頼区間のうち95%が真の平均値を取り囲みうる。 (真の平均値が95%の確率で、ある信頼区間の中にあるとする解釈はまちがい)

ある残存林内の樹木の平均直径が知りたい Baysian的な方法 (BOX 3.2) その1) 木の直径が正規分布に従うと仮定 事前情報なし 平均と標準偏差を推定 95%信用区間 46.6-66.0 その2) 木の直径が正規分布に従うと仮定 平均と標準偏差を推定 事前情報:ほかの43残存林間で平均値がどれくらいばらつくか。       平均値の平均値(=53)、平均値の分散(=25)の正規分布っぽい  →ある残存林内でどれくらい直径がばらつきそうかの指標として使用 95%信用区間 48.8-61.1

ポアソン分布の利用 コドラート(400㎡)内の樹木本数 (BOX 3.4) 正の離散型データ、平均値がゼロ付近 木が調査区内にランダムに分布

ポアソン分布 with extra variation Hierarchical model (BOX 3.5 & 3.6) 植物の分布が調査区内でランダムでない BOX 3.5 ・コドラート間の平均植物密度分布が対数正規分布に従う ・コドラート内の植物個体数がポアソン分布に従う BOX 3.6 & Fig 3.3 m sd → Hyper parameter mean data

平均値の推定に必要なサンプルサイズ 事前情報が役立つと 必要なサンプルサイズが小さくなる 正規分布からデータが得られる場合、、 事前情報なし s: サンプルの標準偏差 E: 推定しようとする標準誤差 事前情報あり ν:事前情報の標準偏差 事前情報が役立つと 必要なサンプルサイズが小さくなる