伝達事項 質問: W = −U にしなくて良いのか?どういう時に “−” (マイナス符号) がつくのか? 解答:

Slides:



Advertisements
Similar presentations
減衰自由振動の測定 理論と実験手順. この資料の内容 振動現象の重要性 実験の目的 学んだ振動の種類と特徴 振動のメカニズム 実験装置と方法.
Advertisements

1 べき関数の微分 微分の定義は 問題 微分の定義を使って、次の関数の微分を求めよ。 a) b) c) d) e) n は自然数 数2の復習.
質量 1kg 重力 ( 重さ )9.8N 〇重力加速度 地球の重力によって生じる加速度を重力加速度(通 常は,記号 g を用いて表す)と呼ぶ。高校物理のレベル では,一定の値とし, 9.8m/s 2 を用いる。中学校理科の レベルでは,重力加速度を直接的に問題にすることは ないが,それをおよそ 10m/s.
1 運動方程式の例2:重力. 2 x 軸、 y 軸、 z 軸方向の単位ベクトル(長さ1)。 x y z O 基本ベクトルの復習 もし軸が動かない場合は、座標で書くと、 参考:動く電車の中で基本ベクトルを考える場合は、 基本ベクトルは時間の関数になるので、 時間で微分して0にならない場合がある。
1 重力 力に従って落下 → E P 減少 力に逆らって上昇 → E P 増加 落下・上昇にともなう重力ポテンシャルエネルギー 変化 P32 図2-5 力が大きいほど E P の 増減は大きくなる. ポテンシャルエネルギーと力の関係.
1 今後の予定 8 日目 11 月 17 日(金) 1 回目口頭報告課題答あわせ, 第 5 章 9 日目 12 月 1 日(金) 第 5 章の続き,第 6 章 10 日目 12 月 8 日(金) 第 6 章の続き 11 日目 12 月 15 日(金), 16 日(土) 2 回目口頭報告 12 日目 12.
有効座席(出席と認められる座席) 左 列 中列 右列 前で3章宿題、アンケートを提出し、 3章小テスト問題、4章講義レポート課題を受け取り、
慣 性 力 と 浮 力.
今後の予定 7日目 11月 4日 口頭報告レポート押印 前回押印したレポートの回収 口頭報告の進め方についての説明 講義(4章),班で討論
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
環境表面科学講義 村松淳司 村松淳司.
医薬品素材学 I 1 物理量と単位 2 気体の性質 1-1 物理量と単位 1-2 SI 誘導単位の成り立ち 1-3 エネルギーの単位
電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
・力のモーメント ・角運動量 ・力のモーメントと角運動量の関係
伝達事項 皆さんに数学と物理の全国統一テストを受けても らいましたが、この時の試験をまた受けていただ きます。
伝達事項 過去のレポートを全て一緒に綴じて提出されている 方が何名かいらっします。 せっかくの過去の宿題レポートが紛失する可能性を
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
コリオリ力の復習資料 見延 庄士郎(海洋気候物理学研究室)
3.エネルギー.
伝達事項 質問: W = −U にしなくて良いのか?どういう時に “−” (マイナス符号) がつくのか? 解答:
有効座席(出席と認められる座席) 左 列 中列 右列 前で4章宿題、アンケートを提出し、 4章小テスト問題、5章講義レポート課題を受け取り、
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
演習(解答) 質量100 gの物体をバネに吊るした時、バネが 19.6 cm のびた。
数楽(微分方程式を使おう!) ~第5章 ラプラス変換と総仕上げ~
水中で落下する球体の運動.
第6回:電流と磁場(2) ・電流が磁場から受ける力 ・磁場中の荷電粒子が受ける力とその運動 今日の目標
天秤の釣り合い 棒と糸の重さは無視できるものとし,(ア)から(カ)に はたく重さを求めよ。.
工業力学 補足・復習スライド 第13回:偏心衝突,仕事 Industrial Mechanics.
1.Atwoodの器械による重力加速度測定 2.速度の2乗に比例する抵抗がある場合の終端速度 3.減衰振動、強制振動の電気回路モデル
山崎祐司(神戸大) 粒子の物質中でのふるまい.
伝達事項 試験は6/6 (土) 1限目の予定です。.
基礎物理学 担当:田中好幸(薬品分析学教室).
原子核物理学 第4講 原子核の液滴模型.
Philosophiae Naturalis Principia Mathematica
微粒子合成化学・講義 村松淳司
軌道エレベータ 軌道エレベーター 2011‐6‐23 MR9045 小西健一.
理科教育法ー物理学ー II 羽部朝男.
物理学セミナー 2004 May20 林田 清 ・ 常深 博.
物理学Ⅰ - 第 4 回 - 前回の復習 力について ニュートンの三法則 ベクトル量 重力と電磁気力(→分子間力)が本質 遠隔力・・・重力
Curriki原典
流体の粘性項を 気体分子運動論の助けを借りて、 直感的に理解する方法
黒体輻射 1. 黒体輻射 2. StefanのT4法則、 Wienの変位測 3. Rayleigh-Jeansの式
今後の予定 4日目 10月22日(木) 班編成の確認 講義(2章の続き,3章) 5日目 10月29日(木) 小テスト 4日目までの内容
有効座席(出席と認められる座席) 左 列 中列 右列.
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
物理学Ⅰ - 第 9 回 -.
物理学Ⅰ - 第 8 回 - アナウンス 中間試験 次回講義(XX/XX)終了前30分間 第7回講義(運動量)までの内容 期末試験
有効座席(出席と認められる座席) 左 列 中列 右列.
有効座席(出席と認められる座席) 左 列 中列 右列.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
3-2 跳水の水理と不連続急拡・急縮水路の流れ
薬品分析学3.
今後の予定(日程変更あり!) 5日目 10月20日(木) 小テスト 1~2章の内容 講義(3章)
物理学Ⅰ - 第 7 回 - アナウンス 中間試験 第8回講義(6/16)終了前30分間 第7回講義(本日)(運動量)までの内容 期末試験
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
低温物体が得た熱 高温物体が失った熱 = 得熱量=失熱量 これもエネルギー保存の法則.
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
ニュートン力学(高校レベル) バージョン.2 担当教員:綴木 馴.
今後の予定 8日目 11月13日 口頭報告答あわせ,講義(5章) 9日目 11月27日 3・4章についての小テスト,講義(5章続き)
今後の予定 7日目 11月12日 レポート押印 1回目口頭報告についての説明 講義(4章~5章),班で討論
宿題を提出し,宿題用解答用紙を 1人2枚まで必要に応じてとってください 配布物:ノート 2枚 (p.85~89), 小テスト用解答用紙 1枚
有効座席(出席と認められる座席) 左 列 中列 右列.
ここでは、歪エネルギーを考察することにより、エネルギー原理を理解する。
電子物性第1 第10回 ー格子振動と熱ー 電子物性第1スライド10-1 目次 2 はじめに 3 格子の変位 4 原子間の復元力 5 振動の波
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
力覚インタラクションのための 物理ベースモデリング
基礎物理学 担当:田中好幸(薬品分析学教室).
基礎物理学 担当:田中好幸(薬品分析学教室).
科学概論 2005年1月27日
Presentation transcript:

伝達事項 質問: W = −U にしなくて良いのか?どういう時に “−” (マイナス符号) がつくのか? 解答: 質問: テスト勉強は計算を中心にやるべきですか? どうやって勉強すれば物理が出来るようになりま すか? 解答:

3章 仕事とエネルギー

仕事(定義) 摩擦力に逆らって床の上の物体を力 F N で d m 移動するのに 必要な仕事量 W は、以下のように定義される。 d(m) W = F(N)•d(m) = Fd(N•m) F(N) 仕事 W = Fd(J) ゆっくりと床の上の2 kg の物体を 3 m 持ち 上げるのに必要な仕事量 W を求める。重力 加速度は g のままとする。 3 m W = 2g(N)•3(m) = 6g(N•m) = 6g (J) W = m(kg)g(m•s-2)h(m) = mgh (J) F = 2g N

位置エネルギー 床の上の h m の位置にある m kg の物体が持 つ位置エネルギー U J を求める。重力加速度 は g のままとする。 F = mg(N) U = m(kg)g(m•s-2)h(m) = mgh (kg•m2•s-2) = mgh (J) 位置エネルギー U J は、床の上の m kg の物 体を h m 持ち上げるのに必要な仕事量 W と 等しい。 h(m) W = m(kg)g(m•s-2)h(m) = mgh (J) U(J) = W(J) 即ち、物体は仕事量 W を受け取って、位置 エネルギー U J を得たと考えられる。 F = mg(N)

位置エネルギー ⇔ 運動エネルギー 宇宙空間を、速度 v (m/s) で転がる質量 m kg の球がある。 この球がもつ運動エネルギー K J を求める。重力加速度は g とする。 K = (1/2)m(kg)v2 (m•s-1)2 = (1/2)mv2 (kg•m2•s-2) = (1/2)mv2 (J) v(m•s-1) K(J) = (1/2)mv2 (J) 床面から h(m) の高さにある物体の位置エ ネルギー U J は U = mgh(J)。 この物体を自由落下させると速度を増しな がら落下する (等加速度運動)。 h(m) 位置エネルギーが運動エネルギーに変換さ れた。 v(m•s-1)

力学的エネルギー保存則 UH = mgh(J) 床面から h(m) の高さにある物体の位置エ ネルギー U J は U = mgh(J)。 KH = 0 (J) この物体を自由落下させると速度を増しな がら落下する (等加速度運動)。 h(m) 位置エネルギー U が運動エネルギー K に 変換された。U と K は互いに交換可能 即ち、 UH = −KL v(m•s-1) mgh(J) = −(1/2)mv2(J) UL = 0 (J) KL = (1/2)mv2(J) 全エネルギー E は E = UH + KH = UL + KL = 一定 (力学的エネルギー保存則)

運動エネルギー ⇔ 仕事 K1 − K0 = W 外力を加えて初速度 v0 (m/s) を速度 v1 (m/s) に変化させた時 W(J) K1 − K0 = W K0 = (1/2)mv02 K1 = (1/2)mv12 速度変化 v0 → v1 (m/s) による運動エネルギー変化 K1 − K0 は 外力による仕事 W に等しい。 K1 > K0 の時 W > 0 (仕事Wにより運動エネルギー K ↑) K1 < K0 の時 W < 0 (始状態→終状態で K ↓) (運動エネルギーから仕事Wを取り出した)

エネルギー:安定性についての考察 床面から h(m) の高さにある物体と床面 にある物体ではどちらが安定か? UH = mgh(J) 答: 床面にある物体のほうが安定。 理由: 床面にある物体のほうが壊れない。 h(m) 位置エネルギーを有している分だけ高エ ネルギー状態 (=仕事をするポテンシャル を有している)。 v(m•s-1) UL = 0 (J) 位置エネルギー:     ポテンシャルエネルギーの一種 化合物でも、高エネルギー状態の化合物は不安定 (反応活性が高いため、化学反応を起こして別化合物になる = 元の化合物は徐々に消失する)

化学におけるエネルギー 化合物A 高エネルギー (反応活性が高い) 仕事ができる (= 化学反応を起こせる) 。 化学反応を起こして別化合物になる。 ΔE(J) = 元の化合物は徐々に消失する。 = 化合物として不安定 = 反応剤として適している。 化合物B 低エネルギー (反応活性が低い) 仕事ができない (= 化学反応を起こせない) 。 = 元の化合物のまま存在し続ける。 = 化合物として安定 = 薬剤化合物 (最終産物) として適している。

化学におけるエネルギー 化合物A → 化合物B + W(J) 化合物B 外からエネルギー (仕事W) を加えて、 高エネルギー化合物へと変換 高エネルギー化合物から低エネルギー 化合物への変換でエネルギー (仕事W) が生成 W (J) > 0 エネルギー (仕事W):熱 (発熱)、光、高エ ネルギー化合物の生成 化合物B 化学反応で生じたエネルギー (仕事W) の多くは熱エネルギーへ。

エネルギーの可換性 エネルギー: (エネルギー保存則) 運動エネルギー モーター 発電機 ポンプ 電気エネルギー 位置エネルギー 水力発電 太陽 電池 電灯 スピーカー マイク 光エネルギー 音のエネルギー 熱エネルギー (エネルギーの最終出口)

演習 ◯ 2 m/s の速度で移動する質量 5 kg の物体に関する以下の 問いに答なさい。 (1) 物体の運動エネルギ—を求めなさい。   問いに答なさい。 (1) 物体の運動エネルギ—を求めなさい。 (2) この物体を静止させるために必要な仕事を求めなさい。 ◯質量 3 kg の物体を床面から 2 m 持ち上げた。この時、以下   の問いに答えなさい。鉛直下向きの変位を正の変位とし、重   力加速度は g のままで良い。 (1) 物体の床面に対する位置エネルギーを求めなさい。 (2) 物体に対してなされた仕事を求めなさい。

演習 ◯ 2 m/s の速度で移動する質量 5 kg の物体に関する以下の 問いに答なさい。 (1) 物体の運動エネルギ— K(J) を求めなさい。 K(J) = (1/2)mv2 = (1/2)×5(kg)×{2(m/s)}2 = 10 J (2) この物体を静止させるために必要な仕事を求めなさい。 静止時の運動エネルギ— KS(J) とすると、速度 v = 0 なので KS(J) = (1/2)mv2 = (1/2)×5(kg)×{0(m/s)}2 = 0 J なされた仕事Wは(終状態の運動エネルギ—)から(始状態 のエネルギ—)を引いたもの W = KS − K = 0(J) − 10(J) = -10 J 答 運動方向と逆方向に10 J

演習 ◯質量 3 kg の物体を床面から 2 m 持ち上げた。この時、以下 の問いに答えなさい。鉛直下向きの変位を正の変位とし、重   の問いに答えなさい。鉛直下向きの変位を正の変位とし、重   力加速度は g のままで良い。 (1) 物体の床面に対する位置エネルギー U(J) を求めなさい。 U(J) = m(kg)g(m•s-2)h(m) = 3(kg)×g(m•s-2)×(-2)(m) = −6g J 註:鉛直下向きを正にとるという変な定義になっていてごめんなさい。 (2) 物体に対してなされた仕事を求めなさい。 物体に対してなされた仕事 W = 得た位置エネルギー U 答 −6g J の仕事がなされた。

演習 ◯質量 2000 g の物体を 200 cm の高さの棚に上げた。この時、 以下の問いに答えなさい。鉛直下向きの変位を正の変位とし、 重力加速度 g = 9.8 m•s-2 とする。 (1) 物体に対してなされた仕事を求めなさい。 (2) この物体が棚から自由落下したとき床面に落ちるときの運動 エネルギーを求めなさ。 (3) 物体が床に落ちる直前の物体の速度を求めなさい。 (4) 物体の床面に対する位置エネルギーを求めなさい。 ◯Aさんが、質量 20 kg の荷物を部屋の真ん中の机から部屋の すみの机に移動した。Aさんが荷物に対してした力学的仕事を 求めなさい。2つの机の高さは同じものとする。

演習 ◯質量 2000 g の物体を 200 cm の高さの棚に上げた。この時、 以下の問いに答えなさい。鉛直下向きの変位を正の変位とし、 重力加速度 g = 9.8 m•s-2 とする。 (1) 物体に対してなされた仕事 W(J) を求めなさい。 (得た)位置エネルギーU(J) = mgh = 2(kg)×g(m•s-2)×(-2)(m) = −4g J 註:質量、高さの単位が kg, m である点に注意。 W(J) = U(J) = −4g J (2) この物体が棚から自由落下したとき床面に落ちるときの運動 エネルギーを求めなさ。 (落下後の)位置エネルギーUU(J) = 2(kg)×g(m•s-2)×(0)(m) = 0 J 位置エネルギーの差が、なされた仕事W2 W2(J) = UU − U = 0 − (−4g) = 4g (J)

演習 ◯質量 2000 g の物体を 200 cm の高さの棚に上げた。この時、 以下の問いに答えなさい。鉛直下向きの変位を正の変位とし、 重力加速度 g = 9.8 m•s-2 とする。 (3) 物体が床に落ちる直前の物体の速度vを求めなさい。 物体が床に落ちる直前の物体の運動エネルギ— = 物体の落下前の位置エネルギーU(J) = (1/2)mv2 4g(J) = (1/2)×2(kg)×v2 v2 = 4g v = 2√g (m/s) (4) 物体の床面に対する位置エネルギーを求めなさい。 (1)で求めた通り、U(J) = mgh = −4g J 註:鉛直下向きを正にとるという変な定義になっていてごめんなさい。

演習 ◯Aさんが、質量 20 kg の荷物を部屋の真ん中の机から部屋の すみの机に移動した。Aさんが荷物に対してした力学的仕事を 求めなさい。2つの机の高さは同じものとする。 高さ変化なしΔh =0: 位置エネルギー変化 = 0 (=mg×0(m)) 初速度 v0 = 0 と最後の速度 v2 = 0: 運動エネルギー変化 = (1/2)m(v2)2 − (1/2)m(v0)2 = 0 =0 =0 速度 = 0 速度 = 0 高さの差 Δh = 0 答 Aさんは何も力学的仕事をしていない

演習 ◯Aさんが、質量 20 kg の荷物を部屋の真ん中の机から部屋の すみの机に移動した。Aさんが荷物に対してした力学的仕事を 求めなさい。2つの机の高さは同じものとする。 荷物に働いている力は重力のみ Aさんが行う仕事は荷物に働いている力は重力に逆らう仕事のみ 高さの差 = 0 W(J) = U(J) = mgh = 20(kg)×g×0(m)= 0 J 答 Aさんは何も力学的仕事をしていない

ポテンシャルエネルギー 位置エネルギーは数あるポテンシャルエネルギーの一つ 位置エネルギー:重力場中のポテンシャルエネルギー m1•m2 重力(重力場に発生する力) F = G r2 m1: 物体1の質量, m2: 物体2の質量, r: 物体間距離, G: 重力定数 電場エネルギー(電位):電場中のポテンシャルエネルギー q1•q2 静電相互作用(クーロン力) F = k r2 q1: 物体1の電荷, q2: 物体2の電荷, r: 物体間距離, k: 比例定数

重力と重力加速度 位置エネルギーは数あるポテンシャルエネルギーの一つ 位置エネルギー:重力場中のポテンシャルエネルギー m1•m2 重力(重力場に発生する力) F = G r2 m1: 物体1の質量, m2: 物体2の質量, r: 物体間距離, G: 重力定数 ここでm1に地球の質量M1、r に地球の半径Rを代入すると M1•m2 M1 F = G = (G ) m2 = gm2 = m2g (= mg) R2 R2 即ち、重力加速度は M1 g = (G ) R2

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 (1) 物体のもつ位置エネルギー U (J) を求めなさい。 2m (2) 物体に働く垂直抗力を求めよ。 30° (3) 斜面に水平方向に物体が受ける力を求めよ。 (4) 物体が斜面の下まで下りた時の位置エネルギーはいくらか。 (5) 物体が斜面の下まで下りた時の運動エネルギーはいくらか。 (6) 物体が斜面の下まで下りた時の速度はいくらか。斜面と床面 は滑らかにつながっているものとする。

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 mg•cos(30°) (1) 物体のもつ位置エネルギー U (J) を求めなさい。 30° 鉛直上向きを正にとると 30° −mg U = mgh = 5(kg)×g(m/s2)×2(m) = 10g J または 98 J 30° 2m −mg•cos(30°) (2) 物体に働く垂直抗力を求めよ。 (鉛直上向きを正にとると) 物体に働く重力 F1 = −mg = −5(kg)×g (m/s2) = −5g (N) 球が斜面を垂直に押す力 F2 = −垂直抗力 F2’ = mg•cos(30°) = 5g(√3/2) = (5√3/2)g (N)

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 −mg•sin(30°) 30° (3) 斜面に水平方向に物体が受ける力F3を求めよ。 30° 鉛直上向きを正にとっているので 2m −mg 30° F3 = −mg•sin(30°) = −5g(1/2) = −5g/2 (N) (4) 物体が斜面の下まで下りた時の位置エネルギー UU はいくらか。 UU = mgh = 5(kg)×g(m/s2)×0(m) = 0 J (5) 物体が斜面の下まで下りた時の運動エネルギー KU はいくらか。 KU = UU − U = 0 − 10g = −10g J 答 斜面に平行下向きに10g J

演習 ◯ 質量 5 kg の小球が 30° の斜面を 2 m の高さから転がった。 以下の問いに答なさい。斜面の摩擦力と小球の半径は無視   以下の問いに答なさい。斜面の摩擦力と小球の半径は無視 できるものとする。 (6) 物体が斜面の下まで下りた時の速度はいくらか。斜面と床面 は滑らかにつながっているものとする。 2m 30° 鉛直上向きを正にとっているので KU = −10(J) = −(1/2)mv2 = −(1/2)×5(kg)×v2(m/s)2 = −5v2/2 −5v2/2 = −10g(J) v2 = (2/5)×10g = 4 |v| = √4g = 2√g m/s 答 斜面に平行下向きに2√g m/s

公式 g: 重力加速度; t: 時刻; 加速度: a; (自由落下)速度 v = gt (v = at) 1 1 (自由落下)距離 D = 2 2