土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.

Slides:



Advertisements
Similar presentations
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
Advertisements

1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
統計解析第 11 回 第 15 章 有意性検定. 今日学ぶこと 仮説の設定 – 帰無仮説、対立仮説 検定 – 棄却域、有意水準 – 片側検定、両側検定 過誤 – 第 1 種の過誤、第 2 種の過誤、検出力.
第6回 適合度の検定 問題例1 サイコロを 60 回振って、各目の出た度数は次の通りであった。 目の出方は一様と考えてよいか。 サイコロの目 (i) 観測度数 : 実験値 (O i ) 帰無仮説:サイコロの目は一様に出る =>それぞれの目の出る確率 p.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
4. 統計的検定 ( ダイジェスト版 ) 保健統計 2014 年度. Ⅰ 仮説検定の考え方 次のような問題を考える。 2014 年のセンター試験、英語の平均点は 119 点であった。 T 高校では 3 年生全員がセンター試験を受験したが、受験生の中から 25 人を選んで調査したところ、その平均点は.
統計学入門2 関係を探る方法 講義のまとめ. 今日の話 変数間の関係を探る クロス集計表の検定:独立性の検定 散布図、相関係数 講義のまとめ と キーワード 「統計学入門」後の関連講義・実習 社会調査士.
エクセルと SPSS による データ分析の方法 社会調査法・実習 資料. 仮説の分析に使う代表的なモデ ル 1 クロス表 2 t検定(平均値の差の検定) 3 相関係数.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4章 統計的検定 統計学 2007年度.
第4回 関連2群と一標本t検定 問題例1 6人の高血圧の患者に降圧剤(A薬)を投与し、前後の収縮期血圧 を測定した結果である。
統計的仮説検定の手順と用語の説明 代表的な統計的仮説検定ー標準正規分布を用いた検定、t分布を用いた検定、無相関検定、カイ二乗検定の説明
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
統計学第10回 多群の差を調べる~ 一元配置分散分析と多重比較 中澤 港
第4章補足 分散分析法入門 統計学 2010年度.
      仮説と検定.
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
ホーエル『初等統計学』 第8章1節~3節 仮説の検定(1)
第1章 統計学の準備 ー 計量経済学 ー.
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
検定 P.137.
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
第9回 二標本ノンパラメトリック検定 例1:健常者8人を30分間ジョギングさせ、その前後で血中の
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
心理統計学 II 第7回 (11/13) 授業の学習目標 相関係数のまとめと具体的な計算例の復習 相関係数の実習.
第6章 2つの平均値を比較する 2つの平均値を比較する方法の説明    独立な2群の平均値差の検定   対応のある2群の平均値差の検定.
確率・統計Ⅱ 第7回.
統計学勉強会 対応のあるt検定 理論生態学研究室 3年 新藤 茜.
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
母分散が既知あるいは大標本の 平均に関する統計的検定
統計学  西 山.
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
対応のあるデータの時のt検定 重さの測定値(g) 例:
クロス集計とχ2検定 P.144.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
Excelによる実験計画法演習 小木哲朗.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
相関分析.
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
第3章 統計的推定 (その1) 統計学 2006年度.
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
確率と統計 年1月12日(木)講義資料B Version 4.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
1.母平均の検定:小標本場合 2.母集団平均の差の検定
母分散の検定 母分散の比の検定 カイ2乗分布の応用
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
確率と統計2009 第12日目(A).
疫学初級者研修  ~2×2表~ 平成12年2月14日(月) 13:00~ 岡山理科大学情報処理センター.
統計的検定   1.検定の考え方 2.母集団平均の検定.
母分散の検定 母分散の比の検定 カイ2乗分布の応用
第4章 統計的検定 (その2) 統計学 2006年度.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
クロス表とχ2検定.
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
第3日目第4時限の学習目標 第1日目第3時限のスライドによる、名義尺度2変数間の連関のカイ2乗統計量についての復習
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
数理統計学  第12回 西 山.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
確率と統計 年12月16日(木) Version 3.
確率と統計 年1月7日(木) Version 3.
Presentation transcript:

土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之

統計的検定が必要とされる状況の例(1) 1.局所的な地震災害が全国に及ぼす影響を知るために,   被災地からやや離れたA県内のある地点における高速   道路の交通量を測定した.地震前の平均は50000台/日   であったが,地震後10日間の平均は49500台/日であった.   交通量が減少したといえるか? 2.地球温暖化の影響で,異常気象が増加するといわれる.   ある地域において,過去10年間の平均年降水量は,   50年前に比べて500mm増加したという.降水量が増加   したといえるか?

統計的検定が必要とされる状況の例(2) 3.A市では,B市と比較して交通事故対策を重視   している.A市における人口当たり交通事故   発生率は0.1%,B市においては0.2%である.    A市の交通事故対策は,交通事故の減少に   寄与しているのか? 「違い」があるか否かの判断基準を提供する 環境の変化 存在の有無を明らかにする 政策の効果

仮説検定の手順(P87)(両側検定「仮説より大きいか小さいか?」 の場合) 1.帰無仮説(Null Hypothesis)H0をたてる. 2. H0を検定するための統計量(パラメータ推定の場合と同じ)T    を選び,その分布を特定する. 3.有意水準αを決め, となる を求める. 4.標本データの下でのTを求める. 5. であればH0を棄却,そうでなければ 棄却せず. あわせてα

仮説検定の手順 (片側検定「仮説よりも小さいか?」の場合) 1.帰無仮説(Null Hypothesis)H0をたてる. 2. H0を検定するための統計量(パラメータ推定の場合と同じ)T    を選び,その分布を特定する. 3.有意水準αを決め, となる を求める. 4.標本データの下でのTを求める. 5. であればH0を棄却,そうでなければ 棄却せず. α

仮説検定の手順(片側検定「仮説より大きいか」の場合) 1.帰無仮説(Null Hypothesis)H0をたてる. 2. H0を検定するための統計量(パラメータ推定の場合と同じ)T    を選び,その分布を特定する. 3.有意水準αを決め, となる を求める. 4.標本データの下でのTを求める. 5. であればH0を棄却,そうでなければ 棄却せず. α

第1種の過誤(Type I Error) 帰無仮説H0が正しいにも関わらず,棄却してしまう誤り 確率α 第2種の過誤(Type II Error) 帰無仮説H0が誤りであるにも関わらず,棄却しない誤り 確率β αを小さくすると βが大きくなってしまう β 第2種の過誤 α 第1種の過誤

1.母平均の検定(母分散がわかっているとき) 必要な値 標本平均値 母分散 標本数 n 有意水準 の下で, 1.帰無仮説:「母平均は である.」 2. (標準正規分布N(0,1)に従う.) を求める 3.正規分布表から

2.母平均の検定(母分散がわからないとき) 必要な値 標本平均値 不偏分散 標本数 n 有意水準 の下で, 1.帰無仮説:「母平均は である.」 2. (自由度n-1のt分布に従う) 3.自由度(n-1)のt分布表から を求める

3.母分散の検定(母平均がわかっているとき) 必要な値 標本数 n 母平均 有意水準 の下で, 1.帰無仮説:「母分散は である.」 2. (自由度nのカイ2乗分布に従う) 3.自由度nのカイ2乗分布表から を求める

4.母分散の検定(母平均がわからないとき) 必要な値 標本数 n 標本平均値 有意水準 の下で, 1.帰無仮説:「母分散は である.」 2. (自由度n-1のカイ2乗分布に従う) 3.自由度nのカイ2乗分布表から を求める

二項母集団の場合(P86,P89例題5.1の2) 必要な値 標本数 n 標本比率 有意水準 の下で, 1.帰無仮説:「母比率は である.」 2. (正規分布に従う) を求める 3.正規分布表から

クロス集計(P80参照)の場合(P88,P89例題5.1の1) は自由度(K-1)(L-1)のカイ2乗分布に従う :i行j列の実際の度数 :i行j列の期待値

の算定(表5.5) 男女に差がない場合の分布の期待値 は自由度2のカイ2乗分布に従う(5.99以下なら棄却)