K: 恒星スペクトル 2007年1月22日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一

Slides:



Advertisements
Similar presentations
無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
Advertisements

三角関数演習問題 r b a [ 三角関数 ] θ 信号理論 (金田) 1演-1 (答は別紙の解答用紙に記入する)
自己重力多体系の 1次元シミュレーション 物理学科4年 宇宙物理学研究室  丸山典宏.
2.2.1 Transport along a ray The radiation transport equation
det(tA)=Σ sgn(σ)aσ(1)1aσ(2)2・・・aσ(n)n
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
第三回 線形計画法の解法(1) 標準最大値問題 山梨大学.
第5回 黒体放射とその応用 東京大学教養学部前期課程 2013年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
平成25年度 東京工業大学 大学院基礎物理学専攻
第9回 星間物質その2(星間塵) 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
観測的宇宙物理学を講ずる。特に,基礎方程式の導出とその解法,観測との比較について詳細な講義を行う。 ***前半の講義内容 ***
第5回 黒体放射とその応用 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
D: 色等級図 2006年10月30日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
Chapter 4 Analytical Radiative Transferの1
J: 系外銀河 J: 系外.
学部:天体輻射論I 大学院:恒星物理学特論IV 講義の狙い=天体輻射の基礎的な知識を、 (1) 天文学の学習を始めた学部3年生 と、
F:天体ダスト 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 12月8日は休講です。 授業の内容は下のHPに掲載される。
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
G:赤外スペクトル  G:赤外スペクトル.
B型星のバルマー吸収線等価幅及び逓減率変換係数算出の試み
第2課 黒体輻射とカラー 2.1. 黒体輻射の式 熱平衡にある振動数νの輻射を考える。 フォトンの個数は常に揺らいでいる
第4回 放射輸送の基礎 東京大学教養学部前期課程 2015年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
第4回 放射輸送の基礎 東京大学教養学部前期課程 2014年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
スケジュール 月曜2限(10:45-12:15),A棟1333号室 10月 11月 12月 1月 2月 10/01 ① 11/5 ⑤
H: 化学平衡 2006年11月27日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
C: 等級 2006年10月23日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。 授業計画は、
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
天体物理学 I : 授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。
第6課: 平衡 2005年11月28日 授業の内容は下のHPに掲載されます。
銀河物理学特論 I: 講義1-2:銀河の輝線診断 Tremonti et al. 2004, ApJ, 613, 898
C:ハヤシライン C: ハヤシライン.
授業の内容 天文学は天体からの光を研究する学問です。 そこでこの授業では、「光」をどう扱うかの基礎を学びます。 授業計画は、
第3課 カラー 2005年11月7日 授業の内容は下のHPに掲載されます。
A: 輻射強度 I とフラックス F 2006年10月2日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
I:銀河系 I: 銀河系.
第8課: 電離平衡と解離平衡 平成16年12月6日 講義のファイルは
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
前期量子論 1.電子の理解 電子の電荷、比電荷の測定 2.原子模型 長岡モデルとラザフォードの実験 3.ボーアの理論 量子化条件と対応原理
マイケルソン・モーレーの実験の検証 マイケルソン・モーレーの実験ではもう一つの往復光を垂直方向に分けて行った。
HERMES実験における偏極水素気体標的の制御
テーマⅧ:低気圧放電の基礎と電子密度・電子温度計測
第8課 エディントン近似 平成17年12月12日 エディントン近似 Eddington Approximation
H:等級とカラー 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 授業の内容は下のHPに掲載される。
独立成分分析 5 アルゴリズムの安定性と効率 2007/10/24   名雪 勲.
黒体輻射 1. 黒体輻射 2. StefanのT4法則、 Wienの変位測 3. Rayleigh-Jeansの式
第9課: 恒星のスペクトル 2005年12月19日 授業の内容は下のHPに掲載されます。
メンバー 梶川知宏 加藤直人 ロッケンバッハ怜 指導教員 藤田俊明
磁気特異星(CP2星)の 元素成層構造について
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
J: 連続吸収 2006年12月18日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
第12課 星間ダスト 平成17年 1月 24日 講義のファイルは
B: 黒体輻射 2006年10月16日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
I:線吸収 2006年12月11日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
パイプ風鈴の振動理論 どの様な振動をしているか。周波数は何で決まるか。 (結論) ・振動数は棒の長さLの二乗に反比例する。
J: 系外銀河 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 授業の内容は下のHPに掲載される。
第9課:吸収係数 平成16年1月19日 講義のファイルは
第4課 輻射の方程式 I 平成16年11月1日 講義のファイルは、
I:銀河系 単位名 大学院:恒星物理学特論IV 教官名 中田 好一 授業の内容は下のHPに掲載される。
1:Weak lensing 2:shear 3:高次展開 4:利点 5:問題点
これらの原稿は、原子物理学の講義を受講している
星間物理学 講義 3: 輝線放射過程 I 水素の光電離と再結合
第5課 輻射の方程式 II 平成16年11月8日 講義のファイルは
F: エディントン近似 2006年11月13日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一
C:ハヤシライン 単位名 大学院:恒星物理学特論II 教官名 中田 好一 授業の内容は下のHPに掲載される。
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
COSMOS天域における赤方偏移0.24のHα輝線銀河の性質
立方体の切り口の形は?  3点を通る平面はただ1つに決まります。
8.2 数値積分 (1)どんなときに数値積分を行うのか?
Presentation transcript:

K: 恒星スペクトル 2007年1月22日 単位名 学部 :天体輻射論I 大学院:恒星物理学特論IV 教官名 中田 好一 教官名     中田 好一 授業の最後に出す問題に対し、レポートを提出。 成績は「レポート+出欠」でつけます。 授業の内容は下のHPに掲載されます。 http://www.ioa.s.u-tokyo.ac.jp/kisohp/STAFF/nakada/intro-j.html F: 大気モデル

Harvard System Pickering/Cannon 分類法 1901 Annals Harvard Obs.28,10 K.1.スペクトル分類 Harvard System Pickering/Cannon 分類法 1901 Annals Harvard Obs.28,10 1912 Annals Harvard Obs.56,225     HD(Henry Draper)カタログ 1918 Annals Harvard Obs.91 低分散対物プリズム写真乾板の眼視分類     1)ライン強度比     2)ラインの有無     3)ライン強度        O(a-e)-B(1,2,3,5,8,9)-A(0,2,3,5)-F(0,2,5,8)-G(0,5) -K(0,2,5)-M(a,b,c,d) F: 大気モデル

Yerkes System Morgan/Keenan スリット分光 λλ3930-4860 A 115A/mm         スペクトルの大部分は同じタイプを示すが、あるライン         の比が異なる。絶対等級に依存。         d: 矮星(dwarfs) g: 巨星(giants) c:特に明るい星    Harvard System        + 光度クラス I(a,ab,b) ← c Supergiant II Bright Giant                 III(a,ab,b) ← g Giant IV Subgiant V ← d Dwarf F: 大気モデル

Yerkes System でのスペクトル分類 O 4ー9、9.5 B 0, 0.5, 1-3, 5, 7,8, 9.5 A 0, 2,3, 5, 7 F 0, 2,3, 5, 7, 8,9 G 0, 2, 5, 8 K 0, 2,3,4,5 M 0, 1, 2, 3, 3, 4, 7, 8 F: 大気モデル

O型星 4686 HeII 特徴 中性及び電離ヘリウム線。電離ヘリウム線がなければB型である。早期程電離ヘリウム線が強くなる。 MK分類は He II 4541/He I 4471 を細分類に使用。 晩期O型ではSi IV (4089) とCIII(4068, 4647, 4651) 4101Hδ 4340Hγ 4861Hβ 4471 HeI 4541 HeII F: 大気モデル

B型星 4367 HeI 4471 HeI 特徴 中性ヘリウム線有り。B2型で最強。 電離ヘリウム線無し。 水素線は晩期程強い。 F: 大気モデル

A型星 特徴 3933 CaII K 水素バルマー線が強く、A2で最強。 3970Hε+ 3968CaII H A型星 特徴 水素バルマー線が強く、A2で最強。 Ca IIのH(3968)、K(3933)線はA0型で現れ、晩期に向かい強まる。 多数の金属線(FeI, FeII, CrI, CrII, TiI, TiII)が有り。 3933 CaII K 4101Hδ 4861Hβ 4340Hγ F: 大気モデル

F型星 3970Hε+3968CaII H 特徴 3933 CaII K Ca IIのKH線が強い。 バルマー線は弱くなる。 CHのGバンドがF3以降強くなる。 3933 CaII K 4101Hδ 4861Hβ 4340Hγ 4300CH G F: 大気モデル

G型星 3933 CaII K 3970Hε+3968CaII H 特徴 バルマー線は金属線と同じくらいまで弱くなる。 CH(Gバンド)とCN(42163883)は強い。 4861Hβ 4383FeI d 4340Hγ 4101Hδ 4326 FeI 4300CH G 4226 CaI g F: 大気モデル

K型星 3933 CaII K 3968CaII H 特徴 弱いバルマー線 強くて多数の金属線 非常に強いHK線 分子バンド(Gバンド)強い TiOはK7で見え始める 3933 CaII K 3968CaII H 4761 TiO 4300CH G 4226 CaI g F: 大気モデル

M型星 3933 CaII K 3968CaII H 特徴 λ<4000A多数金属線 TiO吸収帯 4422, 4584, 4626, 4422, 4584, 4626, 4761, 4954, 5167, 5448, 5497, 5759, 5810, 5847, 5862, 6158, 7054, 7589, 7672, 8433, 4226 CaI TiO 4584 4761 4954 F: 大気モデル

3970Hε+ 3968CaII H 3970Hε+ 3968CaII H バルマージャンプ Hγ Hδ 4686 He II CaII K NaI D F: 大気モデル

3970Hε+ 3968CaII H Hδ Hγ Hβ Hα CaII K FeI E Mg b NaI D F: 大気モデル

n X K.2. 恒星大気の復習: エディントン大気 Ω θ I(x,θ,φ)= I(x,θ) 輻射が軸対称の時、μ=cosθとして、 K.2. 恒星大気の復習: エディントン大気 I(x,θ,φ)= I(x,θ) 輻射が軸対称の時、μ=cosθとして、 N次モメント MN を以下のように定義する。 n MN(x, λ)=(1/4π)∫(cosθ)N I (θ, x, λ) dΩ        =(1/4π) ∫∫ (cosθ)N I (θ, x,λ) (sinθ) dφdθ        =(1/2)∫μN I (μ, x, λ)dμ Ω 0次モーメント   J (x,λ)= (1/4π)∫I (μ, x, λ) dΩ              = (1/2)∫I (μ, x, λ) dμ                   =平均輻射強度 θ X 1次モーメント  H(x,λ)= (1/4π)∫cosθI(θ,x,λ) dΩ = (1/2)∫μI(μ, x,λ) dμ エネルギーフラックス F(n, x ,λ) =∫ cosθ I (θ,x,λ) dΩ= 4πH ( x, λ)        2次モーメント  M2(x,λ)=(1/4π)∫ (cosθ)2I(cosθ, x,λ) dΩ   = (1/2)∫μ2 I(μ, x,λ)dμ   =K (x,λ) F: 大気モデル

この系列はμ2 μ3 と上げても閉じない。式の数<変数の数    μdI/dτ=I-S  (平面近似)      モーメント方程式 × ∫dΩ/4π   : × ∫μdΩ/4π  :  この系列はμ2  μ3  と上げても閉じない。式の数<変数の数 モーメント方程式をどこかでむりやり閉じる必要。     エディントン近似    F: 大気モデル

恒星大気のエディントンモデル エディントン近似を用いて恒星大気のモデルを考えよう。 (1) (2) 仮定:(a)∫Jλκλdλ=∫ελdλ :輻射平衡 ( Radiative Equilibrium)      この仮定は(1)から とすると分かるように、H=一定 を意味する     (b) Jλ(x)= Bλ(T(x)) :LTE     (c )Kλ(x)=(1/3)Jλ(x)    :エディントン近似 F: 大気モデル

κR=Rosseland mean opacityを使うと ∫Hλdλ=H,  ∫Kλdλ=K とする。 (1)から仮定(a)によって、          H(x)=Ho       (3)  (2)から、  κR=Rosseland mean opacityを使うと (4) 平均光学深さτRを τR=∫ρ(x)κR(x)dx と定義すると、   H(τR)=Ho=一定   K(τR)=τRHo+ C   J(τR)=S(τR)=B(τR)=3(HoτR+C)=(σ/π)T4 (τR) したがって、線形近似S=a+bτの結果が適用できる。 F: 大気モデル

:線形解の表面輝度とフラックス θ 下図で光線に沿ったτ=1に注意 τ=0 τ=μ=cosθ τ=1 S(τ)= a + bτ I(τ=0 ,μ>0) = (1/μ)∫∞0S(t)exp( ‐t/μ) dt       =(1/μ)∫∞0(a+bt)exp( ‐t/μ) dt   = (1/μ)[ a∫∞0 exp(‐t /μ) dt + b∫∞0 t exp(‐t /μ) dt] = a+ bμ= S(τ=μ)    (μ>0) I(τ=0 ,μ<0) = 0 (μ<0) θ 下図で光線に沿ったτ=1に注意  τ=0  τ=μ=cosθ  τ=1 F: 大気モデル

Fλ=∫μIλ(μ,τ=0)dΩ= 2π∫10μ( aλ+ bλμ)dμ=2π(aλ/2 + bλ/3) フラックス  Fλ=∫μIλ(μ,τ=0)dΩ= 2π∫10μ( aλ+ bλμ)dμ=2π(aλ/2 + bλ/3)       Source Function  Sλ (τ)=aλ+bλτ だったから、 Fλ=π[aλ+(2/3)bλ]=πSλ(τ=2/3) である。  温度Tの黒体表面からのフラックスがπBλ(T),ここにBλ(T)は輻射強度、  だったことを考えると、線形大気では、τλ=2/3の深さの所を見て  いると言える。  I(τ=0)  a  0  τλ=0  1/3  τλ=μ=cosθ  S(τ=2/3)  2/3  1  τλ=1  a+b  a+bμ F: 大気モデル

J(τR)=S(τR)=B(τR)=3(HoτR+C)=(σ/π)T4 (τR)   H(τR)=Ho=一定   K(τR)=τRHo+ C   J(τR)=S(τR)=B(τR)=3(HoτR+C)=(σ/π)T4 (τR) そのためには、τR=2/3 の温度T(τR=2/3)=Te で、 かつ線形大気では F=4πH=σTe4 であることを思い出せばよい。 すると、 F: 大気モデル

ここまでで、大気内部の温度Tがロスランド光学的深さτRの関数として決まった。 線形大気ではある波長λでのフラックスFλは、その波長で測った光学的深さ τλ=2/3のところでの源泉関数S(τλ=2/3)で決まる。LTEを仮定して Sλ=Bλ(T)とすると、Fλ=πBλ(T) ただし、T=τλ=2/3の深さの温度。 TはτRの関数で与えられているから、τλ=2/3がτRでいくつかが問題。 これは、 と考えて、 で決まる。 F: 大気モデル

κλ < κR Fλ =πBλ [T>Te] κλ > κR Fλ =πBλ [T<Te] ここに、 Fλ Bλ(Te) 結局、Fλ =πBλ (T)         ただし、 λ κλ = κR Fλ =πBλ [Te] κλ < κR Fλ =πBλ [T>Te] κλ > κR Fλ =πBλ [T<Te] κλが小さいと深い所を見るのでFλは大きくなる。 κλ κR λ F: 大気モデル

K.3.恒星スペクトルのモデル 前節と同じ線形大気モデルで、連続スペクトルを扱うと、星のスペクトルは で表される。 Fλ λ κλ 前節と同じ線形大気モデルで、連続スペクトルを扱うと、星のスペクトルは  で表される。 Fλ Bλ(Te) λ κλ κλ = κR Fλ =πBλ [Te] κλ < κR Fλ =πBλ [T>Te] κλ > κR Fλ =πBλ [T<Te] κR まず、κλとκRを求める必要がある。 λ F: 大気モデル

恒星表面でのフラックス W(λ)=λ・F(λ) はしたがって、 こうして、Te、kλ、kR が揃ったので、ある波長λでτλ=2/3になる深さでの温度T(λ)はエディントン大気を仮定して下のように求められる。 恒星表面でのフラックス W(λ)=λ・F(λ) はしたがって、 以下に、このようにして求めた、kλ、W(λ)をグラフで示す。 F: 大気モデル

F: 大気モデル

F: 大気モデル

F: 大気モデル

K.4.連続吸収とバルマージャンプ 以下の5種の大気について、連続吸収の大きさを計算してみよう。 吸収係数 k(cm-1)=k(Hb-f)+k(H-b-f)+k(H-f-f)    =n1σ1+ n2σ2+ n3σ3+n4σ4+N-σbfー+NeN-α-ff スペクトル型   T      Pg(erg/cm3)    Pe(erg/cm3) K7  4,000    100,000 0.18   G0 6,000 62,000       14.0  A9        7,500 17,000 130    A0 10,000  1,300 420 B0.5     25000 1,900 904.7 以下の表とグラフに示すように、T=25,000Kから 10,000Kでは、バルマー端λ=0.3648μで起きるκの変化が大きくなっていった。これは、温度が下がるため(n2/n3)が大きくなったからである。さらに温度が下がると、 (n2/n3) がより大きくなるが、低温になるとグラフに示される通りH-のb-f吸収が効いてくるので、バルマー端でのκのジャンプは目立たなくなってくる。 F: 大気モデル

T Fλ(U) Fλ(B) Fλ(V) U-B B-V 5.5.2色図29 可視域ではA0型星のカラーを0とし、他の星のカラーはそれを基準にして決めている。先に求めたTe=10000KのスペクトルをA0型と考えて、U-B,B-Vという2つのカラーを求めてみよう。有効波長はU,B,Vでλ=0.36, 0.44, 0.55 μmとする。       T    Fλ(U)    Fλ(B)    Fλ(V) U-B B-V K7 4000   2.69E+06 4.82E+06 7.30E+06 -0.05 1.22 G0 6000 7.02E+07 9.69E+07 8.51E+07 -0.33 0.63 F0 7500  1.50E+08 3.14E +08 2.17E+08 0.12 0.37 A0 10000 6.10E+08 1.14E+09 5.61E+08 0.0 0.0 B1 25000 1.21E+10 8.52E+09 3.65E+09 -1.06 -0.15 F: 大気モデル

モデルスペクトルの2色図 B1 -1.0 U-B -0.5 G0 K7 A0 F0 0.5 1.0 B-V F: 大気モデル