無機化学 1      5回   10/19/2012 3章 イオン結合とイオン結晶 目的:NaCl、Na2SO4などのような原子および多原子イオンから成るイオン結晶の生成、構造、格子エネルギー、物性を紹介する。

Slides:



Advertisements
Similar presentations
物理化学 福井工業大学 工学部 環境生命化学科 原 道寛. 物理化学: 1 章原子の内部 (メニュー) 1-1. 光の性質と原子のスペクトル 1-2. ボーアの水素原子モデル 1-3. 電子の二重性:波動力学 1-4. 水素原子の構造 1-5. 多電子原子の構造 1-6.
Advertisements

無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
無機化学 II 坪村太郎. 無機化学 II 第1回第1回 4/7 無機化学Iの復習と無機化学IIで学ぶこととのかかわり 第2回第2回 4/14 無機化学と環境、資源 第3回第3回 4/21 産業と無機化合物のかかわり 第4回第4回 4/28 遷移金属元素 性質と資源 * 第5回第5回 5/12 遷移金属の化合物.
化学概論 第5回 GO⇒41⇒GO を押してください 33 / 80.
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
FUT 原 道寛 名列___ 氏名_______
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
環境表面科学講義 村松淳司 村松淳司.
物質量 原子量・分子量・式量.
元素の周期表 教科書 p 元素を 原子番号 順に並べる 性質の良く似た元素がある周期で現れる 元素の周期律 周期表
教養の化学 第14週:2014年1月20日   担当  杉本昭子.
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
3章 イオン結合とイオン結晶  最終回 3.2) イオン結晶の構造
セラミックス 第4回目 5月 13日(水)  担当教員:永山 勝久.
化学反応式 化学反応:ある物質が別の物質に変化 反応物 → 生成物 例:酸素と水素が反応して水ができる 反応物:酸素と水素 生成物:水
水の話 水分子の特徴 小さい分子なのに常温で液体 水(液体)から氷(固体)になると 体積が大きくなる。 電気陰性度が大きい原子は 分極
無機物質 金属元素 「金属イオンの分離」 3種類の金属イオン      をあてよう! 実験プリント 実験カード.
固体の圧電性.
金箔にα線を照射して 通過するα線の軌跡を調べた ラザフォードの実験 ほとんどのα線は通過 小さい確率ながら跳ね返ったり、
無機化合物の構造と特性 との関係を理解する
基盤科学への招待 クラスターの不思議 2005年6月3日  横浜市立大学 国際総合科学部  基盤科学コース 野々瀬真司.
3章 イオン結合とイオン結晶 出典 有機物性化学の基礎 斉藤軍治 化学同人(2006) 3章     物性化学 松永義夫 裳華房(s60年)2章 (高学年向き)     Wikipedia 目的:ここでは、NaCl、Na2SO4などのような原子および多原子イオンから成るイオン結晶の生成、構造、格子エネルギー、物性の解説とともに、有機イオンやラジカル電子を含むイオン結晶、イオン液体などを紹介する。
3章 イオン結合とイオン結晶 2回目 陽イオン、陰イオン、希ガス型電子配置、He型、Ne型、 Ar型、クーロン静電引力、食塩(岩塩)
HPLCにおける分離と特徴 ~逆相・順相について~ (主に逆相です)
好気呼吸 解糖系 クエン酸回路 水素伝達系.
福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
一成分、二相共存系での平衡 一成分 固液共存系    氷-水.
無機化学 1      6回   10/26/2012 3章 イオン結合とイオン結晶(続)
塩化銅(Ⅱ)CuCl2水溶液の電気分解 (1)陰極で銅が析出 陰極:還元反応 Cu2+ + 2e- → Cu (2)陽極で塩素が発生 陽極:酸化反応 2Cl- → Cl2 + 2e-
3)たんぱく質中に存在するアミノ酸のほとんどが(L-α-アミノ酸)である。
TTF骨格を配位子に用いた 分子性磁性体の開発 分子科学研究所 西條 純一.
空孔の生成 反対の電荷を持つイオンとの安定な結合を切る必要がある 欠陥の生成はエンタルピーを増大させる
3章 イオン結合とイオン結晶 3回目(最終) まず 復習 (2R+2r)/2R=3
科学的方法 1) 実験と観察を重ね多くの事実を知る 2) これらの事実に共通の事柄を記述する→法則 体積と圧力が反比例→ボイルの法則
金属使用の歴史 ●優れた材料: 強度が高くて、一定の形を作るのが容易 ●有史以前の単体金属: 金、銀、銅、鉄、錫、鉛、水銀
セラミックス 第4回目 5月 7日(水)  担当教員:永山 勝久.
基礎無機化学 期末試験の説明と重要点リスト
ボルタ電池 (-)Zn|H2SO4aq|Cu(+)
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
微粒子合成化学・講義 村松淳司
酸化と還元.
平成18年度 構造有機化学 講義スライド テーマ:炭素陽イオン 奥野 恒久.
金属のイオン化傾向.
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
平成30年7月7日 平成30年度 宇都宮大学教員免許状更新講習  【中学校理科の実験講習】 ボルタ電池、備長炭電池.
教養の化学 第8週:2013年11月11日   担当  杉本昭子.
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
半導体の歴史的経緯 1833年 ファラデー AgSの負の抵抗温度係数の発見
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
福井工業大学 原 道寛 学籍番号____ 氏名________
学年   名列    名前 物理化学  第2章 1 Ver. 2.1 福井工業大学 原 道寛 HARA2005.
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
化学1 第12回講義        玉置信之 反応速度、酸・塩基、酸化還元.
◎ 本章  化学ポテンシャルの概念の拡張           ⇒ 化学反応の平衡組成の説明に応用   ・平衡組成       ギブズエネルギーを反応進行度に対してプロットしたときの極小に対応      この極小の位置の確定         ⇒ 平衡定数と標準反応ギブズエネルギーとの関係   ・熱力学的な式による記述.
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
モル(mol)は、原子・分子の世界と 日常世界(daily life)をむすぶ秤(はかり)
近代化学の始まり ダルトンの原子論 ゲイリュサックの気体反応の法則 アボガドロの分子論 原子の実在証明.
13族-遷移金属間化合物の熱電材料としての応用
これらの原稿は、原子物理学の講義を受講している
La及びY添加した層状熱電変換酸化物Ca349の結晶構造と熱電特性 H.Nakatsugawa and G.Kametani
福井工業大学 原 道寛 学籍番号____ 氏名________
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
Pb添加された[Ca2CoO3]0.62CoO2の結晶構造と熱電特性
3.建築材料の密度 密度の支配因子 原子量 原子の配列状態 一般的に原子量(原子番号)が大きいほど、密度は大きい
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
原子記号の復習 日本語→記号 記号→日本語   H.Kadoi.
電解質を添加したときの溶解度モデル – モル分率とモル濃度
K2 = [ln K] = ln K2 – ln K1 = K1.
学年   名列    名前 物理化学  第2章 1 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
Presentation transcript:

無機化学 1      5回   10/19/2012 3章 イオン結合とイオン結晶 目的:NaCl、Na2SO4などのような原子および多原子イオンから成るイオン結晶の生成、構造、格子エネルギー、物性を紹介する。

****前期 「化学」 復習****  化学式, 分子式, 実験式, 化学方程式 ●元素記号を用いて物質を表した式( chemical formula)のうち、分子を表記するのは      (molecular formula)(例:He, H2O, O2, C6H6)で、イオン結晶では各構成元素の最も簡単な整数比で表す(      empirical formula 例:NaCl, NH4Cl、Na2SO4)。 化学式 分子式 実験式 ●化学式を用いて        (chemical reaction)を示したものを         (chemical equation)という。左辺に      (reactant)、右辺に      (product)を書き、左辺と右辺で同じ種類の原子数は同じである。         2H2 + O2 → 2H2O  (反応式は→を用いる) 化学反応 化学方程式 反応物 生成物

アボガドロの法則、モル ●「同温同圧のもとでは、すべての気体は同じ体積中に同数の分子を含む」というのが「             」で 0℃、1.013×105Pa(パスカル)(1気圧)で、6.0221×1023個(NA, 凡そ6×1023)の気体分子を集めると、その種類によらず22.414 l(リットル、凡そ22.4 l)となる。 アボガドロの法則 ●この粒子数を含む純物質を        という単位でカウントする。基準は炭素で、炭素12.0 g が1モルである。上の化学反応は、2モルの水素と1モルの酸素が反応して2モルの水ができることを示す。 1モル(mol)

物質量、分子量、式量、化学量論係数 ●酸素原子1モルは16.00 g、酸素分子1モルは32.00 gで、物質量という。純物質1モルの質量はモル質量(M g/mol)で、分子の場合、単位を除いたのが       (molecular weight)である。イオン結晶では実験式を用いた化学方程式が用いられ、分子量の代わりに    (formula weight)が用いられる。 分子量 式量 ●化学反応で重要なのは反応物、生成物の前につく係数と熱の出入りである。エタノールを燃やすと、炭酸ガスと水が生成するので   aC2H5OH + bO2  →  cCO2 + dH2O 係数a―dを         (stoichiometric coefficient)という。炭素で 2a = c, 酸素で a + 2b = 2c + d, 水素で 6a = 2dであるから, a:b:c:d =1:3:2:3となる。    C2H5OH + 3O2  →  2CO2 + 3H2O 化学量論係数

熱化学方程式 ●熱の出入りを考慮した熱化学方程式(thermochemical equation)では、反応物、生成物の状態が重要であり、化学式の後ろに気体      , 液体      , 固体      の 記号を付ける(熱化学方程式は等号を用いる)。  C2H5OH(l) + 3O2(g) =  2CO2(g) + 3H2O(l) + 1366.7 KJ 1モルのエタノール(液体)と3モルの酸素(気体)の反応に より、2モルの炭酸ガス(気体)と3モルの水(液体)が生成し、1366.7 KJの発熱を伴う。 (gas)g (liquid) l (solid) s

●イオン化傾向:2つの元素のどちらがより酸化され易い(あるいは還元され易い)か、つまり酸化還元反応における化学平衡がどちらに偏っているかの序列である。イオンの溶液中での安定性や電気化学活量など化学平衡として反応が進む方向を決定づける他の因子に大きく影響され、定量化は困難。水溶媒でイオン化列という。(Li, K, Ca, Na) > Mg > (Al, Zn, Fe) > (Ni, Sn, Pb) > (H2, Cu) > (Hg, Ag) > (Pt, Au) のように( )内のイオン化傾向は条件に依存する。貸そうかな、まああてにすな、ひどすぎる借金。理智 (Li) ルビ (Rb) カ (K) バー (Ba)巣と炉 (Sr)仮 (Ca) 名 (Na) 魔具 (Mg)アル (Al) 漫画 (Mn) 合えん (Zn)黒夢 (Cr)鉄 (Fe) 門 (Cd)木庭 (Co) に (Ni) 鈴 (Sn) 園 (Pb) 水 (H)アンチ (Sb) 尾 (Bi) 藤 (Cu)水銀 (Hg)銀色 (Ag) パラパラ (Pd) 白い (Pt) 金 (Au) 化学電池ではイオン化傾向の大きい金属が    、逆が   。 負極 正極

Na + Cl  Na+(Ne型) + Cl(Ar型) (3.1) 3.1)イオン結晶 3.1.1) 原子イオン間のイオン結晶 ●無機イオン結晶は、電子を出して安定な陽イオンとなる原子と、電子を受容して安定な陰イオンとなる原子との間にクーロン静電引力が働いてできる結晶である。 ●各イオンは最外殻が満たされた安定な希ガス型電子配置をとる。代表例は、周期表1族Na(電子配置1s22s22p63s1)と17族Cl(1s22s22p63s23p5)から構成される食塩(岩塩)で、3.1式である。 Na + Cl  Na+(Ne型) + Cl(Ar型)  (3.1) ●イオン結晶を得る第一の条件は3.2式である。         Ip  EA  <  M         (3.2)

●NaNa+のイオン化反応に必要なエネルギー(イオン化ポテンシャル、Ip)は5. 14 eVである。一方, ClClにより3 ●NaNa+のイオン化反応に必要なエネルギー(イオン化ポテンシャル、Ip)は5.14 eVである。一方, ClClにより3.61 eVのエネルギー利得(電子親和力, EA)がある。従って、3.1式の右辺のイオン対形成に5.14  3.61 = 1.53 eVのエネルギーが必要である。結晶に凝集すると、異種イオン対間のクーロン引力、同種イオン間のクーロン反発の総和による安定化エネルギー(マーデルング・エネルギー, M)が得られる。岩塩の凝集エネルギーは約7.9 eVで、3.1式の右辺へ必要な1.53 eVを凌駕しているので安定なイオン結晶となる。

イオン結晶の一般的性質 無機原子イオンから成るイオン結晶は、融点が高く、電気の絶縁体で、水などの極性溶媒によく溶け、電解質として働く。 中には、イオン伝導性に優れたものがある。しかし、これらの性質に従わない多くの例外があり、また、有機-無機複合系イオン結晶や有機物イオン結晶は一般的性質を要約するのが困難なほど多様性に富んでいる。

3.1.2) 多原子イオン、分子イオンを含むイオン結晶およびイオン液体  アンモニウム(NH4+)、フォスフォニウム(PH4+)、その水素原子をフェニル基で置換したアニリニウム(C6H5-NH3+)やテトラフェニルフォスフォニウム[(C6H5)4P+]、またシクロプロペニル、シクロヘプタトリエニル(トロピリウム)など多くの無機多原子陽イオン、有機陽イオンがある(図3.1)。また、過塩素酸イオン (ClO4)、硫酸イオン(SO42-)、トリ フルオロメチル硫酸イオン(トリ フラート)(CF3SO3-),燐酸イオン (PO43-)、などの無機多原子陰イ オン、フェノラート(C6H5-O-)、p-ト ルエンスルフォネート(トシラート アニオン、CH3-C6H4-SO3, TsO)、 ピクラート(C6H2(NO2)3-O ) 、シク ロペンタジエニル(Cp )などの 有機陰イオンがある。

変わった物質として、アルカリ陽イオンを包摂したクラウンエーテルなど多種多様なイオンが開発されている。その中でも、融点が室温より低いイオン液体が、蒸気圧が極めて低いので環境を汚さないグリーンな反応溶媒として、最近注目を浴びている。これは、エチルメチルイミダゾリウム(EMI)などのような対称性の低い陽イオンを用いた塩である。

クラウンエーテル:ペダーセンにより発見された環状エーテル 化合物で、環内に様々のアルカリ金属イオンやアンモニウム イオン(M+)をゲスト分子として包含する。包含される陽イオ ンのサイズと環の中央にある空隙サイズの適合性に依存し た錯形成(ホストーゲスト化合物)が行われる。陰イオン(X-) は強いイオン対形成から緩和される。従って、イオン結晶MXはクラウンエーテルを含む無極性非水溶媒(多くの有機溶媒)に可溶となり、X-はM+に強い束縛を受けずに存在するので、反応性が極めて向上する。このような陰イオンをnaked anionという。生体内で、活性なnaked anionを生成することは危険であり、クラウンエーテルを飲取しないよう取り扱いに注意する。クラウンエーテルは、それを形成する原子数と環内の酸素の数で慣用名が決定される。18-クラウン-6 エーテルが 最も一般的に利用される。レーンは クリプタンドを用い、3次元包摂化 合物の化学を展開し、クラムは、こ れらの包摂化合物(ホスト-ゲスト) の化学を分子認識の視点で展開し、上述3化学者は1987年にノーベル化学賞を受賞した。包摂化合物(クラスレート化合物)として、ヒドロキノンへのメタノール、Ar, Kr, Xeの挿入、-シクロデキストリンへの中性分子の挿入、ヨウ素デンプンなどがある。

3.2) イオン結晶の構造 塩化セシウム型、岩塩型、閃亜鉛鉱型 幾つかの代表的結晶構造があり、重要。 ●イオン間に働くクーロン静電力は方向性をもたないので、イオン結晶の構造は陰イオン(半径R)、陽イオン(半径r)の数の比、半径比、分極率によって支配される。 ●各イオンはできるだけ多くの反対符号のイオン(その数を配位数:coordination number)に取り囲まれるようにして安定化する。陽イオンと陰イオンの数の比が1:1の場合の配位数は、8、6、4である。

1)陽イオンの半径と陰イオンの半径に大きな違いがない時(r/R>0 1)陽イオンの半径と陰イオンの半径に大きな違いがない時(r/R>0.73 であると)、主に塩化セシウム型: CsX(X = Cl, Br, I)、NH4X(X = Cl, Br, I)など、約50種の化合物がある。配位数8。 2r R 図3.2a) CsCl型 CsClの単位格子 r/R=0.732 [(2R+2r)/2R=3] 全ての原子が同種なら体心立方格子(body centered cubic, bcc, 占有率68%, 全てのアルカリ金属、Ba, 多くの遷移金属が属す。 1 2

2)陽イオンが小さくなり0. 73 > r/R > 0 2)陽イオンが小さくなり0.73 > r/R > 0.414ならば岩塩型:上記CsX(X = Cl, Br, I)を除く全てのハロゲン化アルカリが属す。200種以上の化合物がある。配位数6。 1 2r 2R 図3.2b) 岩塩型の単位格子 r/R=0.414[(2R+2r)/2R=2], 陽イオン、陰イオンは各々面心立方格子(face centered cubic, fcc, 占有率74.1%)、全てが同種原子なら単純立方格子(simple cubic、sc, 占有率52%, Poの低温相)である。 ●岩塩構造はイオン結晶以外にも多く見られ、多くの遷移金属はB, C, N, SiおよびGeと結合して岩塩型構造の金属性物質を与える。これらは脆く、硬く、融点が高い。良い熱伝導体、導電体である。

3) 陽イオンが小さくなり、陰イオンが大きくなると(0 3)  陽イオンが小さくなり、陰イオンが大きくなると(0.414 > r/R)閃亜鉛鉱型 (別名CuCl型: 閃亜鉛鉱(ZnS)、CdS、ハロゲン化銅(I)など40種近くの化合物がある。Cu+, Clの位置に炭素Cをいれるとダイヤモンド構造となる。配位数4)やウルツ鉱型(別名ZnO型) (ウルツ鉱(ZnS、ウルツ鉱は閃亜鉛鉱の多形で、より稀に産出する), ZnO, CdS, AgIなど20余種の化合物がある。配位数4)をとることが多い。 2 O Q P L R 2r 1 L Q O P 図3.2c) 閃亜鉛鉱型(CuCl型), r/R =0.225, [R/(R+r)=2/3] 全原子が同種でダイヤモンド型構造 (4配位、Si,Ge,灰色Sn,占有率は34%)である 図3.2d) ウルツ鉱(ZnS)型 (ZnO型)

陽イオンと陰イオンの数の比が2:1または1:2の場合の配位数は8:4, 6:3と4:2(1:2ではその逆) 1) r/R > 0 陽イオンと陰イオンの数の比が2:1または1:2の場合の配位数は8:4, 6:3と4:2(1:2ではその逆) 1) r/R > 0.73ならば配位数8:4のホタル石型(ホタル石CaF2 ), CaとFを入れ替えた構造を逆ホタル石型という。 図3.2e) ホタル石型 ホタル石(フルオライト) 結晶を火の中に入れると光を発するので、この名がある。緑や紫の美しい結晶であるが、硬度4で軟らく劈開性が強いので日本では宝石に使われない。高級光学レンズ材、フッ素の貯蔵材、濃硫酸に入れて加熱するとフッ化水素(HF) が発生する

2) 0.73 > r/R > 0.414で配位数6:3のルチル型(ルチル(金紅石)は酸化チタン(TiO2)の多形の一つ)。 図3.2f) ルチル型 3) 0.225>r/Rなら4:2配位のCu2O型(Ag2Oなど) Cu O 図3.2g) Cu2O型 Cu2O CuO