市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 データ入力 データ分析 報告書の作成.

Slides:



Advertisements
Similar presentations
はじめてのパターン認識 第1章 第4グループ 平田翔暉. パターン認識 パターン認識 o 観測されたパターンを、あらかじめ定められ たクラスに分類すること クラス o 硬貨: 1 円玉、 5 円玉、 10 円玉、 50 円玉、 100 円玉、 500 円玉 o アルファベット: 26 種類 o 数字:
Advertisements

5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
計量的手法入門 人材開発コース・ワークショップ (IV) 2000 年 6 月 29 日、 7 月 6 ・ 13 日 奥西 好夫
1 変量データの記述 (度数分布表とヒストグラム) 経済データ解析 2009 年度後 期. あるクラスのテストの点数が次のように なっていたとする。 このように出席番号と点数が並んでいるものだけでは、 このクラスの特徴がわかりづらい。 → このクラスの特徴がわかるような工夫が必要 → このクラスの特徴がわかるような工夫が必要.
1 市場調査の手順 1. 問題の設定 2. 調査方法の決定 3. データ収集方法の決定 4. データ収集の実行 5. データ分析と解釈 – データ入力 – データ分析 6. 報告書の作成.
社会福祉調査論 第 8 講 統計の基本的整理 12 月7日. 【目標】 量的調査の集計方法、結果の示し方につ いて、基礎的な手法を習得する。 統計値を捉えるための諸指標を理解する。
社会調査データの分析 社会調査・実習. 分析の手順(1) 1 1 入力データの点検 (全部の調査票 に目を通す) 2 2 通し番号の入力。必要ならば回答の コード化。 3 3 入力フォーマットの決定 4 4 データ入力( Excel, エディターなど)
潜在クラス分析入門 山口和範. 内容 条件付独立 シンプソンのパラドックス 対数線形モデルにおける表現 局所独立 潜在変数モデル Lem 入門.
統計学入門2 関係を探る方法 講義のまとめ. 今日の話 変数間の関係を探る クロス集計表の検定:独立性の検定 散布図、相関係数 講義のまとめ と キーワード 「統計学入門」後の関連講義・実習 社会調査士.
1 調査データ分析 2003/5/27 第6回 堀 啓造(香川大学経済学部). 2 課題 (1) 解答 (1) Pearson のカイ2乗= 自由度= 1 漸近有意確率= 男女とコーヒー・紅茶の好み において連関がない( χ 2 (1)=0.084,p>0.05 )。 または.
エクセルと SPSS による データ分析の方法 社会調査法・実習 資料. 仮説の分析に使う代表的なモデ ル 1 クロス表 2 t検定(平均値の差の検定) 3 相関係数.
データ解析基礎 2. 度数分布と特性値 keyword データの要約 度数分布表,ヒストグラム 分布の中心を表す基本統計量
SPSS操作入門 よい卒業研究をめざして 橋本明浩.
1.尺度の種類 2.単純集計 3.クロス集計とχ2検定 4.平均値の比較(t検定と分散分析) 5.課題 6.参考文献
A-2資料⑤ 職業レディネス・テスト 第3版 実施手順.
第1章 記述統計の復習 統計学 2007年度.
データ分析入門(7) 第7章 データの操作と比較 廣野元久.
分散分析マスターへの道.
社会調査とは何か(3) 調査対象者の選定方法
第1章 記述統計の復習 統計学 2011年度.
統計学 第3回 「データの尺度・データの図示」
代表値と散らばり.
第1章 記述統計の復習 統計学 2010年度.
第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。
データ分析2 1.平均値の比較のタイプ 2.対応のあるt検定 3.対応のないt検定 4.3つの以上のグループの差を調べる 5.参考文献
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
初歩的情報リテラシーと アンケート集計のためのExcel・SPSS講座
因子分析や3相因子分析による分析の問題点を整理する 狩野裕+原田章(行動工学講座)
臨床統計入門(3) 箕面市立病院小児科  山本威久 平成23年12月13日.
マーケティング・リサーチ.
マイクロシミュレーションにおける 可変属性セル問題と解法
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
クロス集計とχ2検定 P.144.
12月4日 伊藤 早紀 重回帰分析.
メディア学部 2011年9月29日(木) 担当教員:亀田弘之
1変量データの記述 経済データ解析 2006年度.
Webで恋愛の類型を測り集計しレポートにまとめる
データの分類 P.128 診断や治療を,長年の経験則に頼らず, 科学的根拠に裏付けされた事実に基づいて判断する。
調査結果の集計 集計と尺度 調査企画→調査票の作成・サンプリング→フィールドワーク→集計→分析→調査票の作成
データ分析基礎c(2012年以降入学) 情報編集基礎c(2011年以前入学)
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 データ入力 データ分析 報告書の作成.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
地理情報システム論演習 地理情報システム論演習
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成.
看護研究における 統計の活用法 Part 1 京都府立医科大学 浅野 弘明 2012年11月10日.
中澤 港 統計学第4回 中澤 港
数量分析 第2回 データ解析技法とソフトウェア
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
分散分析、判別分析、因子分析.
analysis of survey data 堀 啓造
確率と統計2009 第12日目(A).
データの型 量的データ 質的データ 数字で表現されるデータ 身長、年収、得点 カテゴリで表現されるデータ 性別、職種、学歴
1.因子分析とは 2.因子分析を行う前に確認すべきこと 3.因子分析の手順 4.因子分析後の分析 5.参考文献 6.課題11
都市・港湾経済学(総) 国民経済計算論(商)
本時の目標 相対度数の意味を理解し、二つのデータを比較してその傾向を分析することができる。
5.集計,ピボットテーブル(クロス集計表)
代表値と散らばり.
クロス表とχ2検定.
疫学概論 頻度と分布 Lesson 9. 頻度と分布 §A. 頻度または度数 S.Harano,MD,PhD,MPH.
メディア学部 2010年9月30日(木) 担当教員:亀田弘之
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
情報の集約 記述統計 記述統計とは、収集したデータの分布を明らかにする事により、データの示す傾向や性質を要約することです。データを収集してもそこから情報を読み取らなければ意味はありません。特に膨大な量のデータになれば読みやすい形にまとめて要約する必要があります。
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
1変量データの記述 (度数分布表とヒストグラム)
情報コミュニケーション入門b 第9回 表計算ソフト入門(3)
調査結果の集計 集計と尺度 調査企画→調査票の作成・サンプリング→フィールドワーク→集計→分析→調査票の作成
都市・港湾経済学(総) 国民経済計算論(商)
第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成.
Presentation transcript:

市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 データ入力 データ分析 報告書の作成

測定尺度の分類 例 = ≠ < > + - × ÷ 名義尺度 順序尺度 間隔尺度 比例尺度 JANコード、性別 ○ × 選好順序 ○ × 温度、SD尺度 ○ × 購買量 ○

測定尺度の選択基準 回答者の負担 情報量 適用可能な分析手法

質的(カテゴリカル)データ 尺度によるデータの分類 名義尺度 順序尺度 間隔尺度 比例尺度 質的データ 量的データ

データ分析手法の分類 質的データ (名義、順序) 量的データ (間隔、比例) 一変数の 集計 最頻値 (モード) 平均(ミーン) 分散 多変数間の 関連性 χ2検定 分散分析 回帰分析

マーケティング・リサーチ データ分析手法1 質的データの集計

質的データの例 回答者番号 性別 服の色 1 男性 黒 2 黒以外 3 女性 ・・・・・ 99 100

データの整理(一変数) 度数分布表 表頭 表側 性別 合計 男性 女性 度数 80 20 100 服の色 合計 黒 黒以外 度数 60 40

データの代表値 データを1つの情報で表現する 最頻値(モード) 最も度数の大きいもの 「性別」の最頻値:男性 「服の色」の最頻値:黒

データの整理(二変数) クロス集計表 服の色 性別 男性 女性 合計 黒 56 4 60 黒以外 24 16 40 80 20 100