第3章 統計的推定 (その1) 統計学 2006年度.

Slides:



Advertisements
Similar presentations
統計学の基礎 -何を学ぶか。 何ができるようになるか-. データとは何か 母集団と標本(サンプル)、データの関係 統計的方法を用いることにより、統計量から母数について どれほどのことが言えるか、知ることができる。 2.
Advertisements

母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
2006 年度 統計学講義内容 担当者 河田正樹
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
統計学 西山. 平均と分散の標本分布 指定した値は μ = 170 、 σ 2 = 10 2 、データ数は 5 個で反復 不偏性 母分散に対して バイアスを含む 正規分布カイ二乗分布.
4. 統計的検定 ( ダイジェスト版 ) 保健統計 2014 年度. Ⅰ 仮説検定の考え方 次のような問題を考える。 2014 年のセンター試験、英語の平均点は 119 点であった。 T 高校では 3 年生全員がセンター試験を受験したが、受験生の中から 25 人を選んで調査したところ、その平均点は.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
統計学入門2 関係を探る方法 講義のまとめ. 今日の話 変数間の関係を探る クロス集計表の検定:独立性の検定 散布図、相関係数 講義のまとめ と キーワード 「統計学入門」後の関連講義・実習 社会調査士.
行動計量分析 Behavioral Analysis
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4章 統計的検定 統計学 2007年度.
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
第4章補足 分散分析法入門 統計学 2010年度.
      仮説と検定.
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
第1章 統計学の準備 ー 計量経済学 ー.
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
標本の記述統計 専修大学 経済学部 経済統計学(作間逸雄).
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
第3章 統計的推定 統計学 2008年度.
行動計量分析 Behavioral Analysis
第2章補足Ⅱ 2項分布と正規分布についての補足
母集団平均値の区間推定 大標本の区間推定 小標本の区間推定.
統計学 12/13(木).
統計解析 第10回 12章 標本抽出、13章 標本分布.
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
数理統計学 西 山.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
母分散の信頼区間 F分布 母分散の比の信頼区間
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
第4章 統計的検定 (その2) 統計学 2006年度.
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
第2章 全数調査と標本調査 ー 経済統計 ー.
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
統計学  第9回 西 山.
度数分布表における平均・分散 (第1章 記述統計の復習 補足)
数理統計学 西 山.
推定と予測の違い 池の魚の体重の母平均を知りたい→推定 池の魚を無作為に10匹抽出して調査 次に釣り上げる魚の体重を知りたい→予測
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
第2章 統計データの記述 データについての理解 度数分布表の作成.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
Presentation transcript:

第3章 統計的推定 (その1) 統計学 2006年度

(その1) (その2) Ⅰ 標本分布 Ⅱ 点推定 Ⅲ 区間推定 a) 母集団と標本 b) 標本平均の標本分布 c) 標本分散の標本分布 Ⅰ 標本分布 a) 母集団と標本 1) 標本調査の利点 2) 標本調査における誤差 b) 標本平均の標本分布 c) 標本分散の標本分布 Ⅱ 点推定 点推定 統計量の特性 不偏性 その他の統計量特性 Ⅲ 区間推定 a) 母平均の区間推定 中心極限定理 信頼区間 母分散が既知の場合の区間推定 母分散が未知の場合の区間推定 b) 母比率の区間推定 標本比率の標本分布 母比率の区間推定 c) 標本数の決定 母平均の区間推定における標本数の決定 母比率の区間推定における標本数の決定 (その1) (その2)

Ⅰ 標本分布 a) 母集団と標本 ある集団についての調査をおこなうとき、調査対象となる集団(母集団)からその一部を標本として選び、調査する方法がある。これを標本調査という。

1) 標本調査の利点 費用・時間の削減 得られる情報の増加、精度の向上 全数調査が不可能な場合にも調査可能

標本調査における誤差には次の2つの種類がある 標本誤差 - 標本の偏りによるもの 非標本誤差 - 調査もれ、無回答、記入ミスなど 2) 標本調査における誤差  標本調査における誤差には次の2つの種類がある 標本誤差 - 標本の偏りによるもの  ⇒ 統計理論によりコントロール可能 非標本誤差 - 調査もれ、無回答、記入ミスなど  ⇒ 統計理論によりコントロール不可能 標本の偏りによる誤差がどの程度の範囲に収まるかを、統計理論によって知ることができる。⇒確率の問題

b) 標本平均の標本分布 標本調査をおこなう場合、通常は1つの標本についての特性値(標本平均や標本平均など)がわかり、それから母集団の特性値についての推論をおこなう。母集団全体の情報はわからない。 しかし母集団全体の情報が分かり、とりうるすべての標本について考えることができたなら、標本の特性値についての分布を考えることができる。これを標本分布という。

500人受講している科目の採点に、25人だけ採点して全体の平均点を推定しようとするとき、25人の組み合わせ全てから標本平均が計算でき、その分布を考えることができる。 一般にN個の母集団からn個の標本を選ぶ組み合わせの数はNCnとあらわすことができる。

<簡単な例> 中国地方5県の中古車登録台数(乗用車)(2000年)は次のようになっている。 これを10000未満を切り捨て、各都道府県の頭文字をアルファベットで表すと となる。 母平均、母分散は

この5県を母集団とし、その中から2県を選んで標本とすると、選び方はNCn=10通りとなる。それぞれの標本について、標本平均を求め、その分布をあらわすと次のようになる。

次に標本平均の平均と分散について考えよう。 標本平均の度数分布表から、次のように計算できる。   標本平均の度数分布表から、次のように計算できる。   ※ 度数分布表からの平均の計算は、(度数×階級値)の総和を度数の合計で割れば良い 10

なお、この分散の式は計算式であり、次のようにして求めたものである。   なお、この分散の式は計算式であり、次のようにして求めたものである。 ※ 分散については、{度数×(階級値-平均)2}の総和を度数の合計で割ったものとなる

標本平均の平均、分散と、母平均、母分散の関係として  が成り立つ。分散に関しては  である。この例では、   ※全国規模の統計調査などを考えた場合、母集団の大きさNは非常に大きいので、   は1に近くなり、     とみなせる。   視聴率調査の場合、関東地区1580万世帯から600世帯を選ぶので

次に10通りの標本について、標本分散を求め、その分布をあらわすと次のようになる。 c) 標本分散の標本分布 次に10通りの標本について、標本分散を求め、その分布をあらわすと次のようになる。 パターン s2 T,S 2,2 0 T,O 2,7 6.25 T,H 2,9 12.25 T,Y 2,5 2.25 S,O 2,7 6.25 S,H 2,9 12.25 S,Y 2,5 2.25 O,H 7,9 1 O,Y 7,5 1 H,Y 9,5 4

標本分散の平均について考えると、   標本平均の度数分布表から、次のように計算できる。   となる。標本分散の平均と母分散の関係は次のようになっている。

Ⅱ 点推定 a) 点推定 推論 標本から計算された1つの数値によって、母集団の数値を推定することを点推定という。 Ⅱ 点推定 a) 点推定 標本から計算された1つの数値によって、母集団の数値を推定することを点推定という。 たとえば、標本平均を母平均の推定値と考えることや、標本メディアンを母集団のメディアンの推定値と考えることである。 ただし、一般に t≠θである。 母平均μ 母分散σ2 標本平均x 標本分散s2 推論 母数θ 標本統計量t

点推定をおこなう場合、推定量の持つ望ましい特性をいくつか考えてみよう。 まず、E(t)=θとなることである。 b) 統計量の特性  1) 不偏性 点推定をおこなう場合、推定量の持つ望ましい特性をいくつか考えてみよう。 まず、E(t)=θとなることである。 このような性質を不偏性といい、「tはθの不偏推定量である」という。 (例1) 標本平均  は       となるので、母平均μの不偏推定量である。 (例2) 標本メディアンmeは、母集団メディアンMeの不偏推定量とはならない。 パターン s2 T,S 2,2 0 T,O 2,7 6.25 T,H 2,9 12.25 T,Y 2,5 2.25 S,O 2,7 6.25 S,H 2,9 12.25 S,Y 2,5 2.25 O,H 7,9 1 O,Y 7,5 1 H,Y 9,5 4

(例3) 標本分散s2は、 となり母分散σ2の不偏推定量とはならない。  しかし、           であった。母集団の個体数が十分大きいとき、      とみなせるので、  と変形できる。 一般にE(t)=θ+偏りと表すことができ、「偏り=0」となる推定量のことを不偏推定量という。 パターン s2 T,S 2,2 0 T,O 2,7 6.25 T,H 2,9 12.25 T,Y 2,5 2.25 S,O 2,7 6.25 S,H 2,9 12.25 S,Y 2,5 2.25 O,H 7,9 1 O,Y 7,5 1 H,Y 9,5 4

ところで、母分散の不偏推定量は存在しないのであろうか? の両辺に をかけると         の両辺に   をかけると  となって、不偏推定量となる。  標本分散s2は  であったので、これに   をかけると、  となる。これを標本不偏分散という。 パターン s2 T,S 2,2 0 T,O 2,7 6.25 T,H 2,9 12.25 T,Y 2,5 2.25 S,O 2,7 6.25 S,H 2,9 12.25 S,Y 2,5 2.25 O,H 7,9 1 O,Y 7,5 1 H,Y 9,5 4 ※ 統計学の書籍によっては、最初の分散の定義から、n-1で割ったものを用いているものもある。

効率性 - 不偏推定量がt1, t2 の2つあったとする。このとき、分散の小さいほうが母数θを推定するのにより効率的である。  2) その他の統計量特性 効率性 - 不偏推定量がt1, t2 の2つあったとする。このとき、分散の小さいほうが母数θを推定するのにより効率的である。 パターン s2 T,S 2,2 0 T,O 2,7 6.25 T,H 2,9 12.25 T,Y 2,5 2.25 S,O 2,7 6.25 S,H 2,9 12.25 S,Y 2,5 2.25 O,H 7,9 1 O,Y 7,5 1 H,Y 9,5 4 t2の方が効率的

一致性 - 標本数を大きくしたときに、t がθに近づく。 十分性 - tは標本に含まれるすべての情報を含んでいる。 パターン s2 T,S 2,2 0 T,O 2,7 6.25 T,H 2,9 12.25 T,Y 2,5 2.25 S,O 2,7 6.25 S,H 2,9 12.25 S,Y 2,5 2.25 O,H 7,9 1 O,Y 7,5 1 H,Y 9,5 4