経済統計 第三回 5/1 Business Statistics

Slides:



Advertisements
Similar presentations
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
Advertisements

数理統計学 西 山. 前回のポイント<ルート N の法則> 1. データ(サンプル)の合計値 正規分布をあてはめる ルート N をかけて標準偏差を求める 2. データ(サンプル)の平均値 正規分布を当てはめる 定理8がポイント ルート N で割って標準偏差を求める.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
統計学入門2 - 後期 第 1 回 - 1 統計学入門2 講義内容の紹介 推測統計とは. 統計学入門2 - 後期 第 1 回 - 2 教科書 & 参考書 教科書 特に使用しない 参考書 「統計解析の基本と仕組み」 ( 秀和システム ) 「データ分析のための統計入門」(共立出版)
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
第1章 統計的方法の性質 高 尚策 (コウ ショウサク) 准 教授 1 富山大学知能情報工学科 「統計学」第1回 オリエンテーション.
1 統計学 第2週 10/01 (月) 担当:鈴木智也. 2 前回のポイント 「記述統計」と「推測統計」。 データ自体の規則性を記述するのが 「記述統計」、データを生み出した背 景を推測するのが「推測統計」である。 推測統計は記述統計に基づくので、ま ずは記述統計から学ぶ。 以下、データの観測値をX.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
経済統計学 第2回 4/24 Business Statistics
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
統計学  第7回 西 山.
統計学 12/3(月).
標本の記述統計 専修大学 経済学部 経済統計学(作間逸雄).
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
統計学 11/30(木).
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
本時の目標 標本調査の意味を知り、全数調査と標本調査の違いを理解する。
統計的推論 正規分布,二項分布などを仮定 検定 統計から行う推論には統計的( )と統計的( )がある 推定
確率・統計Ⅱ 第7回.
第3章 統計的推定 統計学 2008年度.
行動計量分析 Behavioral Analysis
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
統計学 第3回 10/11 担当:鈴木智也.
統計学 10/19 鈴木智也.
確率・統計輪講資料 6-5 適合度と独立性の検定 6-6 最小2乗法と相関係数の推定・検定 M1 西澤.
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学 11/08(木) 鈴木智也.
数理統計学 第11回 西 山.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
相関分析.
第3回 確率変数の平均 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
確率・統計Ⅰ 第3回 確率変数の独立性 / 確率変数の平均 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
疫学概論 標本抽出法 Lesson 10. 標本抽出 §B. 標本抽出法 S.Harano,MD,PhD,MPH.
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
代表値とは 散布度とは 分布のパラメータ 母集団とサンプル
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
統計学  第9回 西 山.
数理統計学 西 山.
推定と予測の違い 池の魚の体重の母平均を知りたい→推定 池の魚を無作為に10匹抽出して調査 次に釣り上げる魚の体重を知りたい→予測
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
サンプリングと確率理論.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
Presentation transcript:

経済統計 第三回 5/1 Business Statistics 鈴木智也 紫英館 304号 Office Hour:月曜日 第2講時

はじめに この講義では、推測統計を扱う。 前回は記述統計のおさらい。 今回から推測統計に入る。 ☆推測統計 母集団特性値を、標本データから計算した標本統計量を元に、推測する。

推測統計の例 ① ☆政治:内閣支持率調査 母集団:有権者全体 標本:インタビューされた人達 母集団特性値:有権者全体の内閣支持率 推測統計の例 ① ☆政治:内閣支持率調査 母集団:有権者全体 標本:インタビューされた人達 母集団特性値:有権者全体の内閣支持率 標本統計量:インタビューされた人達の間 での内閣支持率 ⇒まずは有権者にインタビューする。

推測統計の例 ② ☆気象:降水確率の予報 母集団特性値 ある気圧配置の日全体のうち、雨が降る日の割合。 標本統計量 推測統計の例 ② ☆気象:降水確率の予報 母集団特性値  ある気圧配置の日全体のうち、雨が降る日の割合。 標本統計量 過去に同じ気圧配置をした日のうち、雨が降った日の割合。 ⇒まずは、過去の気象データを当たる。

推測統計の例 ③ ☆環境:標識再捕獲による生息数調査 母集団特性値 ある地域に住む特定生物の生息数 標本統計量 推測統計の例 ③ ☆環境:標識再捕獲による生息数調査 母集団特性値 ある地域に住む特定生物の生息数 標本統計量 捕獲した生物の中にいる、標識をつけた個体の割合から推定した生息数 ⇒まずはその生物に標識をつける。

標本調査:推測統計の第一歩 推測統計を行うには、まずは標本を採ってこなくてはならない(標本調査)。 標本をどう採るかで、標本統計量の値は変わる。 ⇒標本は、母集団を正しく代表するようなもの(代表的標本)でなければならない。

標本抽出論 もし標本調査に偏りがあれば、それは母集団を正しく代表しない。 例)中日スポーツ新聞が、読者を対象に、プロ野球の人気球団を調査したら? ⇒中日ドラゴンズの人気が、全国民を対象にした調査結果よりも、高く出ることが予想される。⇒標本に偏りがある。

標本抽出論(続) 偏りのない標本調査は当たり前?珍しい? 例)今年2月~3月の小泉内閣の支持率 Y新聞(やや保守):49.4% A新聞(やや革新):41.0% どちらを信じればよい?

標本抽出論(続々) ☆無作為抽出(Random Sampling) 母集団を構成するどの個体についても、それが標本に選ばれる機会(確率)が同じであるようにする方法。[例:くじ引き] ⇒新聞の内閣支持率調査は、自社の読者を対象にしていれば、無作為抽出ではない。

標本統計量 調査した標本から、標本統計量を計算する。 推定したい母集団パラメータが 平均ならば、標本平均 分散ならば、標本分散 何かの比率ならば、標本比率。

標本平均

標本平均の平均値 標本平均は大体どのくらいの値? ⇒期待値を取る(付論参照)

標本平均の分散 標本平均はどれくらい値が散らばる? ⇒分散を取る(付論参照)

中心極限定理 以上のことをまとめると、

標準化 正規分布に従う変数の標準化

付論:期待オペレーター X、Yは確率変数、c は定数。