正規分布確率密度関数.

Slides:



Advertisements
Similar presentations
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
Advertisements

Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
統計学 第3回 西山. 第2回のまとめ 確率分布=決まっている分布の 形 期待値とは平均計算 平均=合計 ÷ 個数から卒業! 平均=割合 × 値の合計 同じ平均値でも 同じ分散や標準偏差でも.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
数理統計学  第9回 西山.
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
回答と解説.
疫学概論 二項分布 Lesson 9.頻度と分布 §B. 二項分布 S.Harano,MD,PhD,MPH.
疫学概論 ポアソン分布 Lesson 9.頻度と分布 §C. ポアソン分布 S.Harano,MD,PhD,MPH.
経済統計学 第2回 4/24 Business Statistics
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
統計解析 第7回 第6章 離散確率分布.
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計学 11/13(月) 担当:鈴木智也.
第1回 担当: 西山 統計学.
Microsoft Excel 2010 を利用した 2項分布の確率計算
ホーエル『初等統計学』 第5章 主要な確率分布
統計解析 第9回 第9章 正規分布、第11章 理論分布.
確率の考え方の基礎 二項分布と正規分布 2006年1月25日 作成:本間聡.
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
流れ(3時間分) 1 ちらばりは必要か? 2 分散・標準偏差の意味 3 計算演習(例題と問題) 4 実験1(きれいな山型の性質を知ろう)
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
第2章補足Ⅱ 2項分布と正規分布についての補足
統計学 11/19(月) 担当:鈴木智也.
数理統計学  第8回 第2章のエクササイズ 西山.
数理統計学  第8回 西山.
第7回 二項分布(続き)、幾何分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
母集団平均値の区間推定 大標本の区間推定 小標本の区間推定.
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学 11/08(木) 鈴木智也.
統計学  第6回 西山.
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
数理統計学 第11回 西 山.
コンクリートの強度 (構造材料学の復習も兼ねて)
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
数理統計学 第4回 西山.
第3回 確率変数の平均 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
7. 音声の認識:高度な音響モデル 7.1 実際の音響モデル 7.2 識別的学習 7.3 深層学習.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
確率・統計Ⅰ 第3回 確率変数の独立性 / 確率変数の平均 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
Mathematical Learning Theory
応用統計学の内容 推測統計学(inferential statistics)   連続型の確率分布   標本分布   統計推定   統計的検定.
確率論の基礎 「ロジスティクス工学」 第3章 鞭効果 第4章 確率的在庫モデル 補助資料
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
数理統計学 西 山.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
母分散の信頼区間 F分布 母分散の比の信頼区間
第8回 二項分布の近似、ポアソン分布、正規分布
経営学研究科 M1年 学籍番号 speedster
最尤推定・最尤法 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
統計学  第9回 西 山.
疫学概論 ポアソン分布 Lesson 9.頻度と分布 §C. ポアソン分布 S.Harano,MD,PhD,MPH.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
臨床統計入門(1) 箕面市立病院小児科  山本威久 平成23年10月11日.
数値解析 第6章.
データ分布の特徴 基準化変量 歪度 尖度.
Microsoft Excel 2010 を利用した 2項分布の確率計算
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
3 一次関数 1章 一次関数とグラフ §4 方程式とグラフ         (3時間).
コンピュータの高速化により, 即座に計算できるようになってきたが, 手法的にはコンピュータ出現以前に考え出された 方法が数多く使われている。
Presentation transcript:

正規分布確率密度関数

標準正規分布 定義(Standard Normal Distribution) 標準正規分布の特徴と性質 標準正規分布の計算 二項分布の正規分布による近似

定義 正規分布の基準化確率変数

標準正規分布と密度関数 確率密度関数 が次の式で与えられる確率分布を、標準正規分布と呼び、 N(0, 1) と書く:

標準正規分布のグラフ z =0 標準正規分布 N (0, 1) z 一般 N (μ,σ2) σ σ 左右対称 変曲点 変曲点 x→±∞のとき、x軸に漸近する。決して0になることはない。 変曲点については、 f ’’ (x)=0 とおくと、たしかに x=μ±σが得られる。確かめてみよ。 一般 N (μ,σ2) z =0 σ σ

標準正規分布 正規分布 正規分布表 標準正規分布では、Zが決まれば、P(≧Z)の表が計算されている。それを 正規分布表 といいます。主な値を222頁に掲げる。  Z     P       1 - P 1.0   0.135 0.865 1.65  0.05 0.95 2.0   0.023    0.977 2.32  0.01      0.99 3.0   0.001    0.999

正規分布のグラフと平均 μによる変化 (σ = 1)

正規分布のグラフと分散 σによる変化 (μ= 2) σ= 0.5 σ= 1.0 σ= 1.5 σ= 2.0 σ(分散)が大きくなると、横に広がるため、(面積一定なので)ピークの高さも低くなる。

累積分布関数 -3.5<z<3.5の積分値は教科書のp226にまとめられている。

標準正規分布のグラフ

標準正規分布の諸変数   範囲  Z  0     0.3989  1     0.242 0.6826  2     0.054  0.9544  3     0.0044 0.9974

標準正規分布の性質(p.116)

性質の説明 z a b

証明:

証明: 左辺から

練習問題

二項分布の正規分布による近似 nが大きく、pが小さくないとき

例題 さいころを500回投げて、2の目が80回以上  100回以下出る確率を求めよ。 解:

,

練習問題:p.125, 問題5 参考答案(練習問題5) (1) 証明 (2) 証明 (3) 0.0098 (1) 証明 (2) 証明 (3) 0.0098 (4) 0.5826 正規分布の性質による計算 (5) c=2.575 選択問題p126, 問題6