学習の流れ 本時のねらい 「2次方程式を利用して、いろいろな問題を解決しましょう。」 ↓ 課題の提示 カレンダー 図形での活用場面4

Slides:



Advertisements
Similar presentations
2章 文字の式 文字を使った式(第2時) 第1時の内容はスライド4~7の板書写真を参考にしてください。1時間で行こうと思えば行けます。
Advertisements

指導手順 最初の問題で、グラフで表されているものの意味を考えさせる。 問題2で、グラフを書くことの必要性を理解させる。
ねらい 2つの数や数量の相等関係や大小関係を、等式や不等式で表したり、等式や不等式の意味を読みとったりすることができる。
1辺が1cmの正方形のあつ紙を、下の図のように1だん、2だん、……とならべて、階だんの形を作ります。20だんのときの、まわりの長さを求めましょう。 3だん 4だん 20この図をかけばわかるけど…。 だんの数とまわりの長さには、どんな関係があるのかな。
折り紙幾何学 ~折り紙で数学を楽しもう~ 2903 木村 麻里.
円順列.
一次関数と方程式 本時の流れ ねらい「二元一次方程式をグラフに表すことができる。」 ↓ 課題の提示 yについて解き、グラフをかく
本時の目標 連立方程式の加減法のしかたを理解し、加減法を用いて連立方程式を解くことができる。
2点A(2,4)、B(-3,1)の距離を求めてみよう。
有効数字 有効数字の利用を考える.
一次関数のグラフ(式を求めること) 本時の流れ ねらい「グラフや座標など与えられた条件をもとに一次 関数の式を求める。」 ↓
一次関数のグラフ(式を求めること) 本時の流れ ねらい「グラフや座標など与えられた条件をもとに一次 関数の式を求める。」 ↓
「2次方程式を利用して、いろいろな問題を解決しましょう。」
本時の目標 負の数をふくむ3つ以上の数の乗法や除法の効率のいい計算のしかたに気づき、効率よく計算することができる。
下のように、つりあいのとれた形の半分をかくしました。見えている半分の形から全体の形を予想しましょう。
5年  面積.
第二回 連立1次方程式の解法 内容 目標 連立1次方程式の掃出し法 初期基底を求める 連立1次方程式を掃出し法を用いてExcelで解析する
指導手順 導入には図形の調べ方を学習するにあたって、図形を見た目だけで判断しないことが大事だということに気づかせるため、下記の2つのサイトから錯視をいくつかピックアップしてみせると盛り上がります。 スライド3~8まではスライドショーにしないで表示し、実際に動かして確認するといいです。 「イリュージョンフォーラム」
4章 平行と合同 2 多角形の外角の和.
1 式の計算 1章 式の計算 §2 単項式の乗法・除法         (2時間).
本時の目標 「身近な直方体をもとに実際に表面積と体積を求めることで、相似な立体の表面積比と体積比について理解する。」
本時のねらい 「円周角と中心角の意味を理解し、二つの角の関係について、操作・実験を通して予測したことを確認し、定理としてまとめる。」
思考力・表現力を高める 学習の流れ 本時のねらい 「数学的活動を通して思考力・表現力を高める」 ↓
本時のねらい 「相似の意味と性質を理解し、相似な図形の辺の長さや角度を求めることができる。」
ねらい 方程式の意味や、方程式の解、解くことの意味について理解する。
本時の目標 かっこのついた式を分配法則を使って効率よく解くことができる。
中学校2年生 数学科 図形の性質.
指導手順 「例題1の境界線の問題」、「面積の等しい三角形を見つける問題」、「四角形を変形して同じ面積の三角形をつくる問題」は、2パターン用意していますので、どちらかは復習でお使いください。
「三角形の面積の変化の様子を一次関数としてとらえることができる。」
本時のねらい 「直角三角形の合同条件を導き、それを理解し、証明ができるようにする。」
本時のねらい 「三角形の1辺に平行な直線が他の2辺と交わるとき、それぞれの交点は、その2辺を等しい比に分けることを理解する。」
本時の目標 「相似な図形の相似比と面積比の関係を理解し、それを用いて相似な図形の面積を求めることができる。」
ピタゴラス(Pythagoras)の定理
本時の目標 いろいろな数量を文字を使った式で表すことができる。
2節 連立方程式の利用 1.連立方程式を使った問題
線 形 代 数 (linear algebra) linear ・・・ line(直線)の形容詞形 直線的な、線形の、一次の
面積の単位(㎠/㎡/a/ha/㎢) 1㎡ 1a 1ha 1k㎡ ㎡ 10000㎡ 100㎡ 10000a 100a 100ha
本時のねらい 「二等辺三角形の作図から証明を使って性質を導くことができる。」 「定義や定理の用語の意味を理解する。」
本時のねらい 「図形の中から相似な三角形を見出し、相似条件を用いて証明することができる。」
古代の難問と曲線 (3時間目) 筑波大学大学院 教育研究科 1年                 石井寿一.
証 明 本時のねらい 「仮定、結論の意味を理解し、図形の性質に基づいて、なぜそうなるのかを説明できる。」
図形の移動 穴吹中学校  磯村  淳.
ねらい 平行四辺形の性質の逆を証明し、平行四辺形になるための条件を導くことができる。
中3数 三平方の定理の利用 内 容 2つの三角定規の3辺の比 平面図形への利用 座標平面上の2点間の距離を求める。
5 図形と合同 1章 三角形 §1 二等辺三角形         (4時間).
多項式の乗法.
平行線の性質を使って、面積の等しい図形について考えてみよう。
多項式の乗法 本時の目標 展開の意味を理解し、分配法則を使って多項式の乗法の計算をすることができる。
多角形の外角の和 凹型四角形の角 星形五角形の内角の和
ねらい「二次方程式の解き方を理解する。」
二次方程式の解き方 ねらい「二次方程式を、平方根を利用して解くことができる。」 本時の流れ ↓ 前時の復習でax2=bの解き方を確認する。
学 正多角形のどんな性質を使えば,プログラミングで正多角形を描くことができるだろうか。
本時の目標 円の性質と、円と直線の関係を理解する。 円の接線の作図をすることができる。
本時の目標 「身近にある事象を、相似な図形の性質を使って解決することができる。」
中点連結定理 本時の目標 「中点連結定理を理解する。」
本時の目標 いろいろな立体の体積を求めることができる。
中3数 三平方の定理の計算 三平方の定理の逆 中学校 3年数学 三平方の定理 授業第2時に実施する。
5年 算数 「面積(平行四辺形)」.
本時のねらい 「合同な三角形の作図を通して三角形の合同条件を導き、それを理解する。」
演習問題 下記の表は木造家屋建築作業リストである。
立方体の切り口の形は?  3点を通る平面はただ1つに決まります。
小学校算数単元計画【第6学年:円の面積(どんどんコース)】
本時の目標 かっこのついた式の乗法と除法を、分配法則を使って効率よく解くことができる。
ねらい いろいろな形の方程式を解くことを通して、方程式を解く手順を理解する。
下の図のように、直角三角形と正方 形が直線ℓ上に並んでいる。 8cm 8cm ℓ 8cm 8cm.
1辺が12㎝の正方形ABCDで、点P、Qは同時に頂点Cを出発して、Pは秒速2㎝で辺BC上をBまで動き、Qは秒速1㎝で辺CD上を動きます。
第3学年 図形と相似 ~相似の考え方の活用~.
本時の目標 いろいろな立体の表面積を求めることができる。
二次方程式と因数分解 本時の流れ ねらい「二次方程式を、 因数分解で解くことができる」 ↓ AB=0ならば、A=0,B=0の解き方の説明
復 習 1組の平行線があるとき、一方の直線上の2点から他の直線にひいた2つの垂線の長さは等しい ℓ∥mのとき A C ℓ m B D
Presentation transcript:

学習の流れ 本時のねらい 「2次方程式を利用して、いろいろな問題を解決しましょう。」 ↓ 課題の提示 カレンダー 図形での活用場面4 2次方程式の利用3 学習の流れ 本時のねらい 「2次方程式を利用して、いろいろな問題を解決しましょう。」 ↓ 課題の提示 カレンダー 図形での活用場面4 明治図書 数学教育2013年8月号 P57,58参照

問 題 1 下は2016年10月のカレンダーである。縦に並んでいる2つの日数の積が120になるところを見つけよう。

ヒントカード カレンダーの縦の2つの数の、上の数をxとすると、下の数はつねに( )と表される。この2つの積が120になるので、式は ( )

小テスト ある数 x を、2乗しなければならないところを、間違えて2倍したため、計算の結果は120だけ小さくなりました。この数 x を求めなさい。

B 問 題 2 ヒントカード OA=( )cm OB=( )cm CはOBの中点なのでOC=( )cm 点Pは( )から( )まで毎秒( )cm 点Qは( )から( )まで毎秒( )cm 長方形の面積が( )cm2になるのは何秒後か。 x秒後に面積が( )cm2になるとすると、 PA=( )cmなので、OP=( )cm CQ=( )cmなので、OQ=( )cm よって、長方形の面積は ( )となり、これが 36cm2に等しいから 式( ) ← Q C O ← P A

問 題 3 ヒントカード ( )=( )=( )=( ) A H D 正方形ABCDの1辺の長さは( )cm 正方形EFGHの面積は 問 題 3 ヒントカード A H D 正方形ABCDの1辺の長さは(   )cm ( )=( )=( )=( ) 正方形EFGHの面積は (   )cm2 はAE=xcmとすると BE=(  )cm E G B C (式) F 直角三角形の底辺と高さにあたるので大きい正方形から4つの直角三角形の面積をひいた面積が250cm2

問 題 4 5×5の正方形を作るには、棒は何本必要ですか。 264本の棒をすべて使って正方形が作れる場合には、どんな大きさになるでしょうか。 問 題 4  ・・・・・・ 1×1 (   )本 2×2 (   )本 3×3 (   )本 4×4 (   )本 5×5の正方形を作るには、棒は何本必要ですか。 264本の棒をすべて使って正方形が作れる場合には、どんな大きさになるでしょうか。

問 題 5 次のようにタイルを並べていくと、タイルの枚数の合計が 210枚になった。タイルは何段並んでいるのか求めよ。 1段 2段 3段 問 題 5 次のようにタイルを並べていくと、タイルの枚数の合計が 210枚になった。タイルは何段並んでいるのか求めよ。 ・・・・・・・・・・ 1段 2段 3段 ・・・・・・・・・・

解 答 n+1 n n(n+1) 2 =210 同じ形を上下に重ねて長方形をつくると、 縦、横のタイルの数は下のようになる。 解 答 同じ形を上下に重ねて長方形をつくると、 縦、横のタイルの数は下のようになる。 よってn段目は、 n+1 4 ・・・・・・ 3 2 n 1 2 3 n段 1段 2段 3段 ・・・・・・・ これを解いてn=20、-21 nは自然数なので―21は問題に 合わない。よって 20段 n(n+1) 2 =210