統計学  第9回 西 山.

Slides:



Advertisements
Similar presentations
統計学の基礎 -何を学ぶか。 何ができるようになるか-. データとは何か 母集団と標本(サンプル)、データの関係 統計的方法を用いることにより、統計量から母数について どれほどのことが言えるか、知ることができる。 2.
Advertisements

母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
数理統計学 西 山. 前回のポイント<ルート N の法則> 1. データ(サンプル)の合計値 正規分布をあてはめる ルート N をかけて標準偏差を求める 2. データ(サンプル)の平均値 正規分布を当てはめる 定理8がポイント ルート N で割って標準偏差を求める.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
2006 年度 統計学講義内容 担当者 河田正樹
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
統計学 西山. 平均と分散の標本分布 指定した値は μ = 170 、 σ 2 = 10 2 、データ数は 5 個で反復 不偏性 母分散に対して バイアスを含む 正規分布カイ二乗分布.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
第4章 統計的検定 統計学 2007年度.
数理統計学  第9回 西山.
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
数理統計学 西 山.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
第1章 統計学の準備 ー 計量経済学 ー.
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
統計学  第7回 西 山.
第1回 担当: 西山 統計学.
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
統計的推論 正規分布,二項分布などを仮定 検定 統計から行う推論には統計的( )と統計的( )がある 推定
行動計量分析 Behavioral Analysis
数理統計学  第8回 第2章のエクササイズ 西山.
数理統計学  第8回 西山.
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
母分散が既知あるいは大標本の 平均に関する統計的検定
統計学  西 山.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学  第6回 西山.
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
数理統計学 第11回 西 山.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
第3章 統計的推定 (その1) 統計学 2006年度.
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
確率と統計 年1月12日(木)講義資料B Version 4.
数理統計学 西 山.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
母分散の検定 母分散の比の検定 カイ2乗分布の応用
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
母分散の検定 母分散の比の検定 カイ2乗分布の応用
第4章 統計的検定 (その2) 統計学 2006年度.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
数理統計学 西 山.
推定と予測の違い 池の魚の体重の母平均を知りたい→推定 池の魚を無作為に10匹抽出して調査 次に釣り上げる魚の体重を知りたい→予測
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
数理統計学  第6回 西山.
数理統計学  第12回 西 山.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
確率と統計 年12月16日(木) Version 3.
Presentation transcript:

統計学  第9回 西 山

第8回目のポイント 標本分散S2は元の母分散σ2に比べて小さくなる傾向がある(下方バイアス). 不偏分散≒母集団の分散 シグマハット 教科書: 127頁、3‐15式

今日のポイント サンプル平均の確率法則を復習します。 第4章へ進みます。推定入門。 第3章のT分布については、後で戻ります。

例題【1】合計値に関する問題 旅客機利用客の体重は、全体として平均55Kg、標準 偏差10Kgで正規分布していると言われる。では、定 員400人が満席の時の旅客総ウェイトの最大値をいく らと見込むとよいか? これは平均値の確率法則を利用する問題

無作為データ = サイコロの目 全体を母集団 集めたデータをサンプル と呼びます

今回の標本分布 母集団 どんな400人が 多いか 55 ,62, 49, 71, …. 45,72, 36, 51, …. 63, 58, 33, 29, …. 母集団

【1】の解答―実験結果   コンピューター実験で解答しましょう・・・母平均=55、母分散=102、サンプル数=400人に設定してから、1000回反復してサンプル平均を確認

理論的な解答―母集団の確認から 正規分布の 3シグマの法則 平均56.5Kgを超えないはず! 400人がサンプル

練習問題【1】 簡単のため11人満員の時の状況だけを考える あるビルに設置されているエレベーターの定員は11名であり、最大積載量は750Kgと明示されている。定員一杯のとき、平均68.2Kgだと「乗れない!」ということになる。このエレベーターの安全性について、統計上の観点にたって、考えるところを自由に述べなさい。 但し、上のエレベータに乗るかもしれない人たち(=母集団)の体重分布は、N(55,225)としておく。 簡単のため11人満員の時の状況だけを考える

例題【2】:0‐1データの平均値 社会全体で視聴率が30%である人気ドラマがある。100世帯(=100台)のTVを無作為に選んで、視聴率調査をする場合、結果として得られる数字は、どんな範囲におさまるだろうか。 例題2は スキップするかもしれません

例題【2】の解答・・・① 30人はみて、70人は見ていないと回答するサ みた=1、みない=0 サンプル平均の確率法則を使え

0‐1母集団と0‐1サンプル 0、1サンプルの母集団は? 0,1, 1, 0, 1,0,1, …. 1 ,1, 0, 0,0, …. 0,1, 1,0 1,1, ….

視聴率は母平均μのこと 母集団の特徴

例題【1】の理論的な解答 母集団の分布 100人

この反復結果が理論通りか、前のスライドを 反復実験してみると 100個の0‐1データの平均値は? 3000回データ抽出を反復しました. 最大値: 0.45 最小値: 0.15 平均: 0.3002 分散: 2.037346e-03 標準偏差: 0.0451 サンプル誤差 この反復結果が理論通りか、前のスライドを 確認しておいてください

【例題】推定への入門 ある高校の1年生からランダムに5名を選んで100メートル走の記録をとると、 12.32、15.28、14.19、13.72、13.26 だった。学年全体の平均はいくら位か範囲を示して答えなさい。 当分は元の母分散と一致 していると仮定する

【例題】の解答? 学年の平均値は13.75です。 いま調べました。 学年全体は、調べてないので、わかりません。

推定には定石があります① 統計的推測とは割り切り術

推定の定石② サンプルの平均値を標準値に 直すというのは

【例題】の解答 本当はちょっと不正確! 最初正しければ みな正し! 未知数 わかっている値を代入 サンプル誤差 本当はちょっと不正確

信頼係数を90%に落とすと 信頼係数 サンプル平均 標準誤差