情報の集約 記述統計 記述統計とは、収集したデータの分布を明らかにする事により、データの示す傾向や性質を要約することです。データを収集してもそこから情報を読み取らなければ意味はありません。特に膨大な量のデータになれば読みやすい形にまとめて要約する必要があります。

Slides:



Advertisements
Similar presentations
橋本. 階級値が棒の中央! 階級値 図での値 階級下限階級上限
Advertisements

統計学の基礎 -何を学ぶか。 何ができるようになるか-. データとは何か 母集団と標本(サンプル)、データの関係 統計的方法を用いることにより、統計量から母数について どれほどのことが言えるか、知ることができる。 2.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
1 章 データの整理 1.1 データの代表値. ■ 母集団と標本 観測個数 n ( または 標本の大きさ、標本サイズ、 Sample Size) n が母集団サイズに等しい時 … 全標本 または 全数調査 (census) 母集団 (population) 知りたい全体 標本 (sample) 入手した情報.
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
1 変量データの記述 (度数分布表とヒストグラム) 経済データ解析 2009 年度後 期. あるクラスのテストの点数が次のように なっていたとする。 このように出席番号と点数が並んでいるものだけでは、 このクラスの特徴がわかりづらい。 → このクラスの特徴がわかるような工夫が必要 → このクラスの特徴がわかるような工夫が必要.
Advanced Data Analysis 先進的データ分析法 2015 (2) 平成 27 年前期第1クウォータ科目 東京工科大学大学院 バイオニクス・情報メディア学専攻科 担当:亀田弘之.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
社会福祉調査論 第 8 講 統計の基本的整理 12 月7日. 【目標】 量的調査の集計方法、結果の示し方につ いて、基礎的な手法を習得する。 統計値を捉えるための諸指標を理解する。
生物統計学・第 4 回 比べる準備をする 平均、分散、標準偏差、標準誤差、標準 化 2015 年 10 月 20 日 生命環境科学域 応用生命科学類 尾形 善之.
ヒストグラム5品種 松江城 出雲大社 石見銀山 三瓶山 アクアス しかしグラフで比較するのはめんどうなところがある 端的に1つの数字(代表値)で品種の特徴を表したい.
QC七つ道具 工業高校におけるキャリア教育 高等学校(工 業) パレート図パレート図 特性要因図 ヒストグラム チェックシート 散布図 グラフ 管理図 層別特性要因図ヒストグラムチェックシート散布図グラフ管理図層別.
統計学 第3回 西山. 第2回のまとめ 確率分布=決まっている分布の 形 期待値とは平均計算 平均=合計 ÷ 個数から卒業! 平均=割合 × 値の合計 同じ平均値でも 同じ分散や標準偏差でも.
生体情報論演習 - 統計法の実践 第 1 回 京都大学 情報学研究科 杉山麿人.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
1 調査データ分析 2003/5/27 第6回 堀 啓造(香川大学経済学部). 2 課題 (1) 解答 (1) Pearson のカイ2乗= 自由度= 1 漸近有意確率= 男女とコーヒー・紅茶の好み において連関がない( χ 2 (1)=0.084,p>0.05 )。 または.
MS-EXCEL、 OpenCalcを 用いた表計算
データ解析基礎 2. 度数分布と特性値 keyword データの要約 度数分布表,ヒストグラム 分布の中心を表す基本統計量
統計解析 第3章 散布度.
『基礎理論』 (C)Copyright, Toshiomi KOBAYASHI,
第2章 1変量データの記述 統計学基礎 2011年度.
ローレンツ曲線とジニ係数 度数分布表の応用 ローレンツ曲線の意味 ローレンツ曲線の作成 ジニ係数.
第1章 記述統計の復習 統計学 2007年度.
統計解析 第7回 第6章 離散確率分布.
第1章 記述統計の復習 統計学 2011年度.
統計学 第3回 「データの尺度・データの図示」
第1回 担当: 西山 統計学.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 データ入力 データ分析 報告書の作成.
代表値と散らばり.
標本の記述統計 専修大学 経済学部 経済統計学(作間逸雄).
第1章 記述統計の復習 統計学 2010年度.
第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。
寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
流れ(3時間分) 1 ちらばりは必要か? 2 分散・標準偏差の意味 3 計算演習(例題と問題) 4 実験1(きれいな山型の性質を知ろう)
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
統計学 10/19 鈴木智也.
統計学 11/08(木) 鈴木智也.
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
統計解析 第1章 データの表現.
メディア学部 2011年9月29日(木) 担当教員:亀田弘之
統計リテラシー育成のための数学の指導方法に関する実践的研究
1変量データの記述 経済データ解析 2006年度.
データのバラツキの測度 レンジと四分位偏差 分散と標準偏差 変動係数.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
地理情報システム論演習 地理情報システム論演習
看護研究における 統計の活用法 Part 1 京都府立医科大学 浅野 弘明 2012年11月10日.
数理統計学 第4回 西山.
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
代表値とは 散布度とは 分布のパラメータ 母集団とサンプル
中澤 港 統計学第4回 中澤 港
他の平均値 幾何平均 調和平均 メデイアンとモード 平均値・メデイアン・モードの関係.
計測工学 -誤差、演習問題 計測工学(第6回) 2009年5月26日 Ⅱ限目.
確率と統計 メディア学部2008年後期 No.3 平成20年10月16日(木).
ex-8. 平均と標準偏差 (Excel 実習シリーズ)
都市・港湾経済学(総) 国民経済計算論(商)
本時の目標 相対度数の意味を理解し、二つのデータを比較してその傾向を分析することができる。
代表値と散らばり.
度数分布表における平均・分散 (第1章 記述統計の復習 補足)
疫学概論 頻度と分布 Lesson 9. 頻度と分布 §A. 頻度または度数 S.Harano,MD,PhD,MPH.
メディア学部 2010年9月30日(木) 担当教員:亀田弘之
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
数理統計学 西 山.
1変量データの記述 (度数分布表とヒストグラム)
臨床統計入門(1) 箕面市立病院小児科  山本威久 平成23年10月11日.
第2章 統計データの記述 データについての理解 度数分布表の作成.
ex-8. 平均と標準偏差 (Excel を演習で学ぶシリーズ)
データ分布の特徴 基準化変量 歪度 尖度.
第1日目第2時限の学習目標 基本的な1変量統計量(その2)について学ぶ。 尺度水準と適切な統計量との関連を整理する。
Presentation transcript:

情報の集約 記述統計 記述統計とは、収集したデータの分布を明らかにする事により、データの示す傾向や性質を要約することです。データを収集してもそこから情報を読み取らなければ意味はありません。特に膨大な量のデータになれば読みやすい形にまとめて要約する必要があります。

よくある数値例 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 A 10 B 5 C

階級と度数 データをxiで表す xiの値がとりうる範囲をいくつかの区分に分けて集計することを考える 各区分を階級とよぶ 階級の中央の値を階級値とよぶ 各階級にxiが表れる回数を度数とよぶ 階級ごとに度数を表した表を度数分布表とよぶ

度数分布表 階級 3.33 5.00 8.33 合計 A 5 10 B C 1 8

棒グラフによる表現 縦軸に階級 横軸に階級 それぞれの棒は接して表現されることが多い 多くの場合「ヒストグラム」とよばれる

Aグループ

Bグループ

Cグループ

ヒストグラム間比較の問題点 階級の影響 縦軸(度数)意味が不明 全標本の数が異なった場合への対応

細かい区分による度数分布表 階級 1 2 3 4 5 6 7 8 9 10 A B C

より細かい階級による表現(A)

より細かい階級による表現(B)

より細かい階級による表現(C)

相対度数 全標本の個数に対する各階級の度数の割合を相対度数とよぶ 最大値は1.0 最小値は0.0 相対度数の利用により、標本の総数が違う場合でも比較が可能となる

相対度数分布表 階級 1 2 3 4 5 6 7 8 9 10 A 0.5 0.0 B 1.0 C 0.1 0.8

棒グラフで表現 縦軸に相対度数 横軸に階数 縦軸の最大値を1.0に統一

相対度数(A)

相対度数(B)

相対度数(C)

平均三種 (Average) 平均(Mean) 中央値(Median) 最頻値(Mode)

Mean 相加平均 算術平均 平均

MeanとTotalの関係

Median 中央値 小さい順に並べた時に中央に位置する値 データが偶数個の場合は中央に近い2つの値の算術平均 異常値に強い 1つまたは2つの値のみしか利用していない

Mode 最頻値 もっとも頻繁に出現した値 一つとは限らない 連続量の場合、階級によって値が変わる 名義尺度であっても意味を持つ

平均三種 Mean Median Mode A 5 0,10 B C

平均からの偏差の利用 ばらつきの指標

xiが平均からどれだけ隔たっているかの指標 平均からの偏差 xiが平均からどれだけ隔たっているかの指標

平均からの偏差の総和 問題 平均からの総和がゼロになることを証明しなさい

平均からの偏差の二乗の平均 分散とよび、ばらつきの指標として利用される Vで表されることが多い

問題 分散の定義式を展開し整理しなさい

分散の平方根 分散の平方根を標準偏差とよぶ Dやσで表されることが多い