数理統計学 第11回 西 山.

Slides:



Advertisements
Similar presentations
母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
Advertisements

数理統計学 西 山. 前回のポイント<ルート N の法則> 1. データ(サンプル)の合計値 正規分布をあてはめる ルート N をかけて標準偏差を求める 2. データ(サンプル)の平均値 正規分布を当てはめる 定理8がポイント ルート N で割って標準偏差を求める.
5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
Lesson 9. 頻度と分布 §D. 正規分布. 正規分布 Normal Distribution 最もよく使われる連続確率分布 釣り鐘形の曲線 -∽から+ ∽までの値を取る 平均 mean =中央値 median =最頻値 mode 曲線より下の面積は1に等しい.
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
統計学 西山. 平均と分散の標本分布 指定した値は μ = 170 、 σ 2 = 10 2 、データ数は 5 個で反復 不偏性 母分散に対して バイアスを含む 正規分布カイ二乗分布.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
確率と統計 2007 平成 20 年 1 月 10 日 ( 木 ) 東京工科大学 亀田弘之. 復習.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
数理統計学  第9回 西山.
第1回 確率変数、確率分布 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
経済統計学 第2回 4/24 Business Statistics
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
数理統計学 西 山.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
確率・統計Ⅰ 第11回 i.i.d.の和と大数の法則 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
統計学  第7回 西 山.
統計学 12/3(月).
第1回 担当: 西山 統計学.
統計解析 第9回 第9章 正規分布、第11章 理論分布.
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
統計的仮説検定 治験データから判断する際の過誤 検定結果 真実 仮説Hoを採用 仮説Hoを棄却 第一種の過誤(α) (アワテモノの誤り)
大数の法則 平均 m の母集団から n 個のデータ xi をサンプリングする n 個のデータの平均 <x>
統計的推論 正規分布,二項分布などを仮定 検定 統計から行う推論には統計的( )と統計的( )がある 推定
放射線の計算や測定における統計誤差 「平均の誤差」とその応用(1H) 2項分布、ポアソン分布、ガウス分布(1H) 最小二乗法(1H)
確率・統計Ⅱ 第7回.
数理統計学  第8回 第2章のエクササイズ 西山.
数理統計学  第8回 西山.
統計学 12/13(木).
統計学  西 山.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学 11/08(木) 鈴木智也.
統計学  第6回 西山.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
数理統計学 第4回 西山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
正規分布確率密度関数.
確率と統計2008 平成20年12月4日(木) 東京工科大学 亀田弘之.
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
確率と統計 年1月12日(木)講義資料B Version 4.
数理統計学 西 山.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
第5回 確率変数の共分散 確率・統計Ⅰ ここです! 確率変数と確率分布 確率変数の同時分布、独立性 確率変数の平均 確率変数の分散
統計学  第9回 西 山.
メディア学部 2010年9月30日(木) 担当教員:亀田弘之
数理統計学 西 山.
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
確率と統計2007(最終回) 平成20年1月17日(木) 東京工科大学 亀田弘之.
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
数理統計学  第6回 西山.
数理統計学  第12回 西 山.
平成23年12月22日(木) No.9 東京工科大学 担当:亀田弘之
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
確率と統計 年12月16日(木) Version 3.
確率と統計 年1月7日(木) Version 3.
Presentation transcript:

数理統計学 第11回 西 山

前回のポイント サンプル平均の確率法則 サイコロの目は、平均とは違う サンプル平均は正規分布する どう分布するか ⇒ 定理8が最重要! どう分布するか ⇒ 定理8が最重要! サイコロの目は、平均とは違う 母集団の分布=札の数字に着目 サンプル平均=とった札全体の平均をみる

例題【1】正規分布を母集団にとる 旅客機利用客の体重は、全体として平均55Kg、標準 偏差10Kgで正規分布していると言われる。では、定 員400人が満席の時の旅客総ウェイトの最大値をいく らと見込むとよいか? これは平均値の確率法則を利用する問題

無作為データ = サイコロの目 全体を母集団 集めたデータをサンプル と呼びます

今回の標本分布 母集団 どんな400人が 多いか 55 ,62, 49, 71, …. 45,72, 36, 51, …. 63, 58, 33, 29, …. 母集団

【1】の解答   最後は理論を使って回答してください コンピューター実験で解答しましょう・・・400人のデータ抽出を1000回反復

理論的な解答―母集団の確認から 400人がサンプル 正規分布の 3シグマの法則 平均56.5Kgを超えないはず!

例題【2】 簡単のため11人満員の時の状況だけを考える 2号館に設置されているエレベーターの定員は11名であり、最大積載量は750Kgと明示されている。定員一杯のとき、平均68.2Kgだと「乗れない!」ということになる。このエレベーターの安全性について、統計上の観点にたって、考えるところを自由に述べなさい。 但し、上のエレベータに乗るかもしれない人たち(=母集団)の体重分布は、N(55,225)としておく。 簡単のため11人満員の時の状況だけを考える

【2】の解答 合計の分析=平均値の分析 3シグマで最大値を予測しておけばよい。ないし、4シグマ。

母集団のμとσ2、そしてサンプル数nを確認してください! 練習問題【1】 サイコロを30回振った時に出る目の数を平均してサンプル平均を調べる。 サンプル平均の値が4.0以上になるのは、どの位の確率ですか? サンプル平均はどの程度の値になるか95%範囲を出しなさい。 母集団のμとσ2、そしてサンプル数nを確認してください!

サンプル平均の確率分布を図に書いてください 練習問題【1】の解答 サンプル平均の確率分布を図に書いてください ① 値4.0を標準化すると、1.61 授業はここまで ② 95%範囲とは2シグマ区間のこと!

練習問題【2】 日本人の体重分布には正規分布N(55,225)が当てはまっているとする。11人のサンプルをとるとして・・・ サンプル平均の値が60Kg以上になるのは、どの位の確率ですか? サンプル平均の値が50Kg台になるのは、どの位の確率ですか?